Transformation Methods for Static Field Problems With Random Domains
Article dans une revue avec comité de lecture
Date
2011Journal
IEEE Transactions on MagneticsAbstract
The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random mapping. In this paper, we present two methods-one based on the resolution of the Laplace equations, one based on a geometric transformation-to determine the random mapping. A stochastic magnetostatic example is treated to compare these methods.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; MIPO, Jean-Claude; MOREAU, Olivier; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2010)A method to solve stochastic partial differential equations on random domains consists in using a one-to-one random mapping function which transforms the random domain into a deterministic domain. With this method, the ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; MIPO, Jean-Claude; TSUKERMAN, Igor; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2013)To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in ...
-
Article dans une revue avec comité de lectureLIU, Sijun; MAC, Hung; MIPO, Jean-Claude; COOREVITS, Thierry; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2015)In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
-
Article dans une revue avec comité de lectureIn this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...