• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of structural damage using the exponential sine sweep method

Communication avec acte
Auteur
HAJRYA, Rafik
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/7399
Date
2013

Résumé

Structural damages can result in nonlinear dynamical responses. Thus, estimating the nonlinearities generated by damages potentially allows detecting them. In this paper, an original approach called the ES2D (Exponential Sine Sweep Damage Detection) is proposed for nonlinear damage detection. This approach is based on a damage index that reflects the ratio of the energy contained in the nonlinear part of the output versus the energy contained in its linear part. For this, we suppose that the system under study can be modeled as a cascade of Hammerstein models, made of N branches in parallel composed of an elevation to the nth power followed by a linear filter called the nth order kernel. The Exponential Sine Sweep Method (ESSM) is then used to identify the linear and nonlinear parts of the model. Exponential sine sweeps are a class of sine sweeps that allow estimating a system’s first kernels in a wide frequency band from only one measurement. The ES2D method is illustrated experimentally on two actual composite plates with surface-mounted PZT-elements: one healthy and one damaged (impact). A given propagation path between a sensor and an actuator in the system is here under investigation. Using the ESSM, the first kernels modeling this propagation path are estimated for both the damaged and undamaged states. On the basis of these estimated first Kernels, the damage index is built. Its detecting efficiency and its insensitivity to environmental noise are then assessed.

Fichier(s) constituant cette publication

Nom:
PIMM-IWSHM-REBILLAT-2013.pdf
Taille:
1014.Ko
Format:
PDF
Description:
Article principal
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Nonlinear structural damage detection based on cascade of Hammerstein models 
    Article dans une revue avec comité de lecture
    HAJRYA, Rafik; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (Elsevier, 2014)
    Structural damages can result in nonlinear dynamical signatures that can significantly enhance their detection. An original nonlinear damage detection approach is proposed that is based on a cascade of Hammerstein models ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
  • A Probabilistic Multi-class Classifier for Structural Health Monitoring 
    Article dans une revue avec comité de lecture
    URIBE, Juan Sebastian; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (Elsevier, 2015)
    In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales