• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
  • Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical modelling of laser rapid prototyping by fusion wire deposit

Article dans une revue avec comité de lecture
Author
ARBAOUI, Larbi
1158 Centre de Mise en Forme des Matériaux [CEMEF]
MOCELLIN, Katia
1158 Centre de Mise en Forme des Matériaux [CEMEF]
ccMASSE, Jean-Eric
211915 Mechanics surfaces and materials processing [MSMP]
BARRALLIER, Laurent

URI
http://hdl.handle.net/10985/8414
DOI
10.1007/s12289-010-0962-2
Date
2010
Journal
International Journal of Material Forming

Abstract

A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based on the lagrangian approach used in the Forge® finite element software. The thermal model coupled with materiallaser model is compared and gives good agreements. Simulations of the rapid prototyping are compared with experimental results.

Files in this item

Name:
MSMP_IntJMaterForm_MASSE_2010.pdf
Size:
458.9Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Related items

Showing items related by title, author, creator and subject.

  • Finite element simulation of magnesium alloys laser beam welding 
    Article dans une revue avec comité de lecture
    BELHADJ, Asma; BESSROUR, Jamel; BOUHAFS, Mahmoud; ccMASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2010)
    In this paper, a three-dimensional finite element model is developed to simulate thermal history magnesium-based alloys during laser beam welding. Space–time temperature distributions in weldments are predicted from the ...
  • CO2 laser beam welding of AM60 magnesium-based alloy 
    Article dans une revue avec comité de lecture
    BELHADJ, Asma; BOUHAFS, Mahmoud; BESSROUR, Jamel; ccMASSE, Jean-Eric; BARRALLIER, Laurent (Laser Institute of America, 2010)
    Magnesium alloys have a 33% lower density than aluminum alloys, whereas they exhibit the same mechanical characteristics. Their application increases in many economic sectors, in particular, in aeronautic and automotive ...
  • Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds 
    Article dans une revue avec comité de lecture
    COMMIN, Loreleï; ROTINAT, René; PIERRON, Fabrice; ccDUMONT, Myriam; ccMASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2012)
    Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. ...
  • Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties 
    Article dans une revue avec comité de lecture
    COMMIN, Loreleï; ROTINAT, René; PIERRON, Fabrice; ccDUMONT, Myriam; ccMASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2011)
    AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. EBSD was used to study the texture ...
  • Residual stress evolution analysis in AZ31 friction stir welds using X-Ray and neutron diffraction 
    Communication avec acte
    COMMIN, Loreleï; ccMASSE, Jean-Eric; BARRALLIER, Laurent (JCPDS - International Centre for Diffraction Data, 2009)
    The challenges of weight reduction in aerospace industry have drawn considerable interest in magnesium alloys technologies. Assessing the efficiency of new joining techniques, as Friction Stir Welding (FSW) is then required. ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales