Plastic deformation of rough rolling contact: An experimental and numerical investigation
Article dans une revue avec comité de lecture
Résumé
Quantifying the surface roughness evolution in contacts is a crucial step in the fatigue prediction process. Surfaces are initially conditioned by the running-in process and later altered by surface fatigue. The aim of this study is to understand and predict the evolution of the micro-geometry in the first few over-rolling cycles. Numerical predictions are validated by experiments. A major difficulty in understanding surface degradation is the measurement of the surface roughness evolution at the relevant scales. A twin disc micro-test rig, called μMag, was specially designed for this kind of analysis. The μMag allows the “in situ” observation of changes in the disc surface during interrupted tests, thus avoiding dismounting the specimens, which is a major cause of inaccuracy. The new method also maintains the relative position of the two discs. The precision of the measurements allows one to use the initial surface micro-geometry as input for the numerical contact calculation. Thus, the plastic deformation of the surfaces can be measured during the first cycles and compared to the numerical prediction. Results show a very good agreement between numerical predictions and experimental measurements.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureDUCOUSSO, Mathieu; CUENCA, Eduardo; MARMONIER, Maxance; VIDEAU, Laurent; COULOUVRAT, François; BERTHE, Laurent (American Physical Society (APS), 2021-05)We present a method to investigate the bulk propagation of a shock wave in a thick, opaque metallic plate. The shock wave is generated by laser-loading. An elastic plane probe wave, contra-propagative with respect to the ...
-
Article dans une revue avec comité de lectureCUENCA, Eduardo; DUCOUSSO, Mathieu; RONDEPIERRE, Alexandre; VIDEAU, Laurent; CUVILLIER, Nicolas; BERTHE, Laurent; COULOUVRAT, François (AIP Publishing, 2020-12)This work aims at demonstrating the ability of an acoustic linear code to model the propagation of a shock wave created by a laser impact over a metallic surface. In this process, a high pressure surface level is reached ...
-
Article dans une revue avec comité de lectureHEBERT, David; BERTRON, I; CHEVALIER, J.M; HALLO, L; LESCOUTE, Emilien; VIDEAU, Laurent; COMBIS, Patrick; GUILLET, F; BERTHE, Laurent; SEISSON, G.; BOUSTIE, Michel (Elsevier, 2013)The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest ...
-
Article dans une revue avec comité de lectureSEISSON, G; HEBERT, David; BERTRON, I; CHEVALIER, J.M; HALLO, L; LESCOUTE, Emilien; VIDEAU, Laurent; COMBIS, Patrick; GUILLET, F; BOUSTIE, Michel; BERTHE, Laurent (Elsevier, 2013)The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest ...
-
Article dans une revue avec comité de lectureBARDY, Simon; AUBERT, Bertrand; BERTHE, Laurent; COMBIS, Patrick; HEBERT, David; LESCOUTE, Emilien; RULLIER, Jean-Luc; VIDEAU, Laurent (SPIE, 2017)In order to control laser-induced shock processes, two main points of interest must be fully understood: the laser–matter interaction generating a pressure loading from a given laser intensity profile and the propagation ...