• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Induction machine fault detection enhancement using a stator current high resolution spectrum

Communication avec acte
Author
EL BOUCHIKHI, El Houssin
CHOQUEUSE, Vincent
CHARPENTIER, Jean-Frederic
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
BENBOUZID, Mohamed
55607 Laboratoire brestois de mécanique et des systèmes [LBMS]

URI
http://hdl.handle.net/10985/8865
DOI
10.1109/IECON.2012.6389267
Date
2012

Abstract

Fault detection in squirrel cage induction machines based on stator current spectrum has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. In this paper, a modified version of MUSIC algorithm has been developed based on the faults characteristic frequencies. This method has been used to estimate the stator current spectrum. Then, an amplitude estimator has been proposed and a fault indicator has been derived for fault severity measurement. Simulated stator current data issued from a coupled electromagnetic circuits approach has been used to prove the appropriateness of the method for air gap eccentricity and broken rotor bars faults detection.

Files in this item

Name:
IRENAV_IECON_2012_CHARPENTIER-2.pdf
Size:
1.084Mb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine 
    Communication avec acte
    EL BOUCHIKHI, EL HOUSSIN; CHOQUEUSE, Vincent; BENBOUZID, Mohamed; CHARPENTIER, Jean-Frederic; BARAKAT, Georges (IEEE, 2011)
    To reduce the cost of wind energy, minimization and prediction of maintenance operations in wind turbine is of key importance. In variable speed turbine generator, advanced signal processing tools are required to detect ...
  • Induction machine bearing failures detection using stator current frequency spectral subtraction 
    Communication avec acte
    EL BOUCHIKHI, El Houssin; CHOQUEUSE, Vincent; BENBOUZID, Mohamed; CHARPENTIER, Jean-Frederic (IEEE, 2012)
    Abstract—Induction machines are widely used in industrial applications. Safety, reliability, efficiency and performance are major concerns that direct the research activity in the field of electrical machines. Though the ...
  • Etude Comparative des Techniques de Traitement du Signal Non- Stationnaires Dédiées au Diagnostic des Génératrices Asynchrones dans les Eoliennes Offshores et les Hydroliennes 
    Communication avec acte
    EL BOUCHIKHI, El Houssin; CHOQUEUSE, Vincent; BENBOUZID, Mohamed; CHARPENTIER, Jean-Frederic (2011)
    L’amélioration de la disponibilité et de la fiabilité des éoliennes offshores et des systèmes de récupération de l’énergie des courants marins implique la nécessité de minimiser et de prévoir les opérations de maintenance. ...
  • Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function 
    Communication avec acte
    AMIRAT, Yacine; CHOQUEUSE, Vincent; BENBOUZID, Mohamed; CHARPENTIER, Jean-Frederic (IEEE, 2010)
    Wind energy conversion systems have become a focal point in the research of renewable energy sources. In order to make the DFIG-based wind turbines so competitive as the classical electric power stations it is important ...
  • Concepts, Modélisation et Commandes des Hydroliennes 
    Chapitre d'ouvrage scientifique
    ccBENBOUZID, Mohammed; ccASTOLFI, Jacques Andre; BACHA, Seddik; ccCHARPENTIER, Jean-Frederic; MACHMOUN, Mohamed; MAITRE, Thierry; ROYE, Daniel (Hermes Science Publications, 2011)
    Face au problème de la gestion des déchets nucléaire et aux émissions de gaz à effet de serre, les énergies renouvelables occupent une place avancée parmi les énergies d’avenir grâce à leur faible impact sur l’environnement ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales