• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines

Communication avec acte
Author
ZHOU, Zhibin
BENBOUZID, Mohamed
55607 Laboratoire brestois de mécanique et des systèmes [LBMS]
CHARPENTIER, Jean-Frederic
ccSCUILLER, Franck
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
TANG, Tianhao

URI
http://hdl.handle.net/10985/8866
DOI
10.1109/ISIE.2012.6237300
Date
2012

Abstract

With regard to marine renewable energies, significant electrical power can be extracted from marine tidal current. However, the power harnessed by a marine current turbine varies due to the periodicity of the tidal phenomenon and could be highly fluctuant caused by swell effect. To improve the power quality and make the marine current generation system more reliable, energy storage systems will play a crucial role. In this paper, the power fluctuation phenomenon is described and the state of art of energy storage technologies is presented. Characteristics of various energy storage technologies are analyzed and compared for marine application. The omparison shows that high-energy batteries like sodiumsulphur battery and flow battery are favorable for smoothing the long-period power fluctuation due to the tide phenomenon while supercapacitors and flywheels are suitable for eliminating short-period power disturbances due to swell or turbulence phenomena. It means that hybrid storage technologies are needed for achieving optimal performance in marine current energy systems.

Files in this item

Name:
IRENAV_ISIE_2012_CHARPENTIER-3.pdf
Size:
654.0Kb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • Power Control of a Nonpitchable PMSG-Based Marine Current Turbine at Overrated Current Speed With Flux-Weakening Strategy 
    Article dans une revue avec comité de lecture
    ZHOU, Zhibin; ccSCUILLER, Franck; CHARPENTIER, Jean-Frederic; BENBOUZID, Mohamed; TANG, Tianhao (Institute of Electrical and Electronics Engineers, 2014)
    This paper deals with power control strategies for a fixed-pitch direct drive marine current turbine (MCT) when the marine current velocity exceeds the rated value corresponding to the MCT nominal power. At over-rated ...
  • Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea State 
    Communication avec acte
    ZHOU, Zhibin; ccSCUILLER, Franck; CHARPENTIER, Jean-Frederic; BENBOUZID, Mohamed; TANG, Tianhao (IEEE, 2013)
    This paper deals with the control strategies for a fixed-pitch marine current turbine (MCT) when the marine current speed exceeds the rated value corresponding to the rated power of generator and converter. Over-rated ...
  • An Up - to - Date Review of Large Marine Tidal Current Turbine Technologies 
    Communication avec acte
    ZHOU, Zhibin; ccSCUILLER, Franck; CHARPENTIER, Jean-Frederic; BENBOUZID, Mohamed; TANG, Tianhao (IEEE, 2014)
    Owning to the predictability of tidal current resources, marine tidal current energy is considered to be a reliable and promising renewable power source for coastal areas or some remote islands. During the last 10 years, ...
  • Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors 
    Communication avec acte
    ZHOU, Zhibin; ccSCUILLER, Franck; CHARPENTIER, Jean-Frederic; BENBOUZID, Mohamed; TANG, Tianhao (IEEE, 2012)
    Swell is the main disturbance for marine tidal speed. The power harnessed by a marine current turbine (MCT) can be highly fluctuant due to swell effect. Conventional Maximum Power Point Tracking (MPPT) algorithm will require ...
  • Application of Flow Battery in Marine Current Turbine System for Daily Power Management 
    Communication avec acte
    ZHOU, Zhibin; ccSCUILLER, Franck; CHARPENTIER, Jean-Frederic; BENBOUZID, Mohamed; TANG, Tianhao (IEEE, 2014)
    Predictable tidal current resources make marine current turbine (MCT) generation system highly attractive as an electricity supply source for coastal areas and remote islands. However, the tidal speed varies greatly due ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales