• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reaction–Diffusion Finite Element Model of Lateral Line Primordium Migration to Explore Cell Leadership

Article dans une revue avec comité de lecture
Auteur
ALLENA, Rachele
99538 Laboratoire de biomécanique [LBM]
MAINI, Philip
167451 Centre for Mathematical Biology, Mathematical Institute

URI
http://hdl.handle.net/10985/9123
DOI
10.1007/s11538-014-0043-7
Date
2014
Journal
Bulletin of Mathematical Biology

Résumé

Collective cell migration plays a fundamental role in many biological phenomena such as immune response, embryogenesis and tumorigenesis. In the present work, we propose a reaction–diffusion finite element model of the lateral line primordium migration in zebrafish. The population is modelled as a continuum with embedded discrete motile cells, which are assumed to be viscoelastic and able to undergo large deformations. The Wnt/ß-catenin–FGF and cxcr4b–cxcr7b signalling pathways inside the cohort regulating the migration are described through coupled reaction–diffusion equations. The coupling between mechanics and the molecular scenario occurs in two ways. Firstly, the intensity of the protrusion–contraction movement of the cells depends on the cxcr4b concentration. Secondly, the intra-synchronization between the active deformations and the adhesion forces inside each cell is triggered by the cxcr4b–cxcr7b polarity. This influences the inter-synchronization between the cells and results in two main modes of migration: uncoordinated and coordinated. The main objectives of the work were (i) to validate our assumptions with respect to the experimental observations and (ii) to decipher the mechanical conditions leading to efficient migration of the primordium. To achieve the second goal, we will specifically focus on the role of the leader cells and their position inside the population.

Fichier(s) constituant cette publication

Nom:
LBM_BMB_Allena_2014.pdf
Taille:
1.683Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • On the mechanical interplay between intra- and inter-synchronization during collective cell migration : a numerical investigation 
    Article dans une revue avec comité de lecture
    ALLENA, Rachele; AUBRY, Denis; SHARPE, James (Springer Verlag, 2013)
    Collective cell migration is a fundamental process that takes place during several biological phenomena such as embryogenesis, immunity response, and tumorogenesis, but the mechanisms that regulate it are still unclear. ...
  • Diffusion model to describe osteogenesis within a porous titanium scaffold. 
    Article dans une revue avec comité de lecture
    SCHMITT, M.; ALLENA, Rachele; SCHOUMAN, T.; FRASCA, S.; COLLOMBET, J.M.; HOLY, X.; ccROUCH, Philippe (Taylor & Francis, 2015)
    In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 ...
  • Cell Migration with Multiple Pseudopodia : Temporal and Spatial Sensing Models 
    Article dans une revue avec comité de lecture
    ALLENA, Rachele (Springer Verlag, 2013)
    Cell migration triggered by pseudopodia (or “false feet”) is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical ...
  • Healthy vs. osteoarthritic hips: A comparison of hip, pelvis and femoral parameters and relationships using the EOS® system 
    Article dans une revue avec comité de lecture
    BENDAYA, Samy; LAZENNEC, Jean-Yves; ANGLIN, Carolyn; ALLENA, Rachele; SELLAM, N.; THOUMIE, P.; ccSKALLI, Wafa (Elsevier, 2015)
    Osteoarthritis is a debilitating disease, for which the development path is unknown. Hip, pelvis and femoral morphological and positional parameters relate either to individual differences or to changes in the disease ...
  • Mechanical modelling of confined cell migration across constricted-curved micro-channels 
    Article dans une revue avec comité de lecture
    ALLENA, Rachele (Tech Science Press, 2014)
    Confined migration is a crucial phenomenon during embryogenesis, immune response and cancer. Here, a two-dimensional finite element model of a HeLa cell migrating across constricted-curved micro-channels is proposed. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales