Physical Interpretations of the Numerical Instabilities in Diffusion Equations Via Statistical Thermodynamics
Date
2004Journal
International Journal of Nonlinear Sciences and Numerical SimulationAbstract
The aim of this paper is to analyze the physical meaning of the numerical instabilities of the parabolic partial differential equations when solved by finite differences. Even though the explicit scheme used to solve the equations is physically well posed, mathematical instabilities can occur as a consequence of the iteration errors if the discretisation space and the discretisation time satisfy the stability criterion. To analyze the physical meaning of these instabilities, the system is divided in sub-systems on which a Brownian motion takes place. The Brownian motion has on average some mathematical properties that can be analytically solved using a simple diffusion equation. Thanks to this mesoscopic discretisation, we could prove that for each half sub-cell the equality stability criterion corresponds to an inversion of the particle flux and a decrease in the cell entropy in keeping with time as criterion increases. As a consequence, all stability criteria defined in literature can be used to define a physical continuous 'time-length' frontier on which mesoscopic and microscopic models join.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureVAN GORP, Adrien; BIGERELLE, Maxence; GRELLIER, Alain; IOST, Alain; NAJJAR, Denis (Elsevier, 2007)This paper proposes a new multi-scale measurement approach performed to compare the surface roughness and the visual aspect of polished surfaces. In this investigation, five specimens of glass moulds presenting different ...
-
Article dans une revue avec comité de lectureBIGERELLE, Maxence; NACEUR, Hakim; IOST, Alain (MDPI, 2016)In a previous investigation (Bigerelle and Iost, 2004), the authors have proposed a physical interpretation of the instability λ = Δt/Δx2 > 1/2 of the parabolic partial differential equations when solved by finite differences. ...
-
Article dans une revue avec comité de lectureBIGERELLE, Maxence; IOST, Alain; ROCHER, Philippe (Elsevier, 2007)Nous proposons dans cet article d'analyser un nouveau procédé de polissage automatique : Ecoclean, qui est développé principalement pour la préparation de prothèses dentaires. En faisant varier les conditions expérimentales ...
-
Communication avec acteBIGERELLE, Maxence; GUILLEMOT, Gildas; HAGEGE, Benjamin; SABER, Oufae; IOST, Alain;
EL MANSORI, Mohamed (Université de Poitiers, 2007)
Le papier actuel présente une tentative de technologie pour modéliser rigoureusement une surface fonctionnelle (surface de cône de pignon intermédiaire) selon ses caractéristiques de finition. La surface virtuelle d'entrée ... -
Article dans une revue avec comité de lectureBIGERELLE, Maxence; IOST, Alain (Elsevier, 2007)A numerical technique was proposed to plot the Abbott curve and to compute its associated parameters defined by the DIN 4776 and ISO 13565 norms. These parameters were then extended and applied to non-sigmoid Abbott curves. ...
