Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy
Article dans une revue avec comité de lecture
Date
2015Journal
Precision EngineeringRésumé
This paper presents experimental results concerning the machinability of the titanium alloy Ti17 with and without high-pressure water jet assistance (HPWJA) using uncoated WC/Co tools. For this purpose, the influence of the cutting speed and the water jet pressure on the evolution of tool wear and cutting forces have been investigated. The cutting speed has been varied between 50 m/min and 100 m/min and the water jet pressure has been varied from 50 bar to 250 bar. The optimum water jet pressure has been determined, leading to an increase in tool life of approximately 9 times. Compared to conventional lubrication, an increase of about 30% in productivity can be obtained.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureTitanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may ...
-
Article dans une revue avec comité de lectureThis article presents the results of an experimental study on the Ti17 titanium alloy, which was carried out to analyze tool wear and the degradation mechanisms of an uncoated tungsten carbide tool insert. Two machining ...
-
Article dans une revue avec comité de lectureUnderstanding the physics of chip formation in machining operations is often difficult due to the complexity of the phenomena involved, such as the extreme and complex loading conditions that occur in the cutting zone. In ...
-
Article dans une revue avec comité de lectureThe aim of this study is to develop a new numerical cutting model that includes fluid structure interaction and to take into account heat transfer between the water-jet, the workpiece and the chip. This has been achieved ...
-
Article dans une revue avec comité de lectureThe development of computation means has allowed the simulation of complex mechanical problems. The first simulations of manufacturing processes at the microstructure scale, namely in the field of machining, have recently ...