Three-Dimensional Constitutive Model Considering Transformation-Induced Damage and Resulting Fatigue Failure in Shape Memory Alloys
Conférence invitée
Abstract
In this work, a constitutive model is developed that describe the behavior of shape memory alloys undergoing a large number of cycles, developing internal damage, and eventually failing. Physical mechanisms associated with martensitic phase transformation occurring during cyclic loadings such as transformation strain generation and recovery, transformation-induced plasticity, and fatigue damage are all taken into account within a thermo-dynamically consistent framework. Fatigue damage is described utilizing a continuum theory of damage. The damage growth rate has been formulated as a function of both the stress state and also the magnitude of the transformation strain, while the complete or partial nature of the transformation cycles is also considered as per experimental observations. Simulation results from the model developed are compared to uniaxial actuation fatigue tests at different stress levels. It is shown that both lifetime and the evolution irrecoverable strain can be accurately simulated.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteCet article présente un modèle micromécanique visco-endommageable pour les composites à matrice thermoplastique renforcée par des fibres de verre courtes et soumis à un chargement en fatigue. L'approche multi-échelles ...
-
Article dans une revue avec comité de lectureThe current work deals with periodic thermomechanical composite media, in which the material constituents are considered to obey the generalized standard materials laws. The aim is to provide a proper homogenization framework ...
-
Article dans une revue avec comité de lectureARIF, Muhamad Fatikul; CHEMISKY, Yves; ROBERT, Gilles; FITOUSSI, Joseph; MERAGHNI, Fodil; SAINTIER, Nicolas (Elsevier, 2014)This paper aims at studying fatigue damage behavior of injection molded 30 wt% short glass fiber reinforced polyamide-66 composite (PA66/GF30). The evolution of dynamic modulus, hysteresis area, cyclic creep and temperature ...
-
Communication avec acteDESPRINGRE, Nicolas; CHEMISKY, Yves; ROBERT, Gilles; MERAGHNI, Fodil (Ibrahim Karaman, Raymundo Arróyave and Eyad Masad / Wiley, 2015)This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended ...
-
Conférence invitéeCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (Scheven Malte von; Keip Marc-André; Karajan Nils, 2017)Shape memory alloys (SMAs) are exploited in several innovative applications such as biocompatible actuators experiencing up to large number of cyclic loads. However, the description of the SMA cyclic response is still ...