Evaluation of a new solid-shell finite element on the simulation of sheet metal forming processes
Communication avec acte
Date
2012Abstract
In this paper, the performance of the solid-shell finite element SHB8PS is assessed in the context of sheet metal forming simulation using anisotropic elastic-plastic behavior models. This finite element technology has been implemented into the commercial implicit finite element code Abaqus/Standard via the UEL subroutine. It consists of an eight-node three-dimensional hexahedron with reduced integration, provided with an arbitrary number of integration points along the thickness direction. The use of an in-plane reduced integration scheme prevents some locking phenomena, resulting in a computationally efficient formulation when compared to conventional 3D solid elements. Another interesting feature lies in the possibility of increasing the number of through-thickness integration points within a single element layer, which enables an accurate description of various phenomena in sheet forming simulations. A general elastic-plastic model has been adopted in the constitutive modeling for sheet forming applications with plastic anisotropy. As an illustrative example, the performance of the element is shown in the earing prediction of a cylindrical cup drawing process.
Files in this item
- Name:
- Pages from Metal Forming 2012.pdf
- Size:
- 743.6Kb
- Format:
- Description:
- Article-SRI-Chalal-et-al-2012
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteSALAHOUELHADJ, Abdellah; CHALAL, Hocine; ABED-MERAIM, Farid; BALAN, Tudor (Onate, E; Owen, DRJ; Peric, D; Suarez, B, 2011)In this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...
-
Article dans une revue avec comité de lectureSALAHOUELHADJ, Abdellah; ABED-MERAIM, Farid; CHALAL, Hocine; BALAN, Tudor (Springer Verlag, 2012)This paper proposes an extension of the SHB8PS solid–shell finite element to large strain anisotropic elasto-plasticity, with application to several non-linear benchmark tests including sheet metal forming simulations. ...
-
Article dans une revue avec comité de lectureSALAHOUELHADJ, Abdellah; ABED-MERAIM, Farid; CHALAL, Hocine; BALAN, Tudor (2011)In this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...
-
Article dans une revue avec comité de lectureBOUKTIR, Yasser; CHALAL, Hocine; HADDAD, Moussa; ABED-MERAIM, Farid (Elsevier, 2016)The ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum ...
-
Quadratic solid‒shell elements for nonlinear structural analysis and sheet metal forming simulation Article dans une revue avec comité de lectureWANG, Peng; CHALAL, Hocine; ABED-MERAIM, Farid (Springer Verlag, 2017)In this paper, two quadratic solid‒shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a twenty-node hexahedral solid‒shell element, denoted SHB20, and its fifteen-node ...