Nonlinear optimals in the asymptotic suction boundary layer: Transition thresholds and symmetry breaking
Article dans une revue avec comité de lecture
Abstract
The effect of a constant homogeneous wall suction on the nonlinear transient growth of localized finite amplitude perturbations in a boundary-layer flow is investigated. Using a variational technique, nonlinear optimal disturbances are computed for the asymptotic suction boundary layer (ASBL) flow, defined as those finite amplitude disturbances yielding the largest energy growth at a given target time T. It is found that homogeneous wall suction remarkably reduces the optimal energy gain in the nonlinear case. Furthermore, mirror-symmetry breaking of the shape of the optimal perturbation appears when decreasing the Reynolds number from 10?000 to 5000, whereas spanwise mirror-symmetry was a robust feature of the nonlinear optimal perturbations found in the Blasius boundary-layer flow. Direct numerical simulations show that the different evolutions of the symmetric and of the non-symmetric initial perturbations are linked to different mechanisms of transport and tilting of the vortices by the mean flow. By bisecting the initial energy of the nonlinear optimal perturbations, minimal energy thresholds for subcritical transition to turbulence have been obtained. These energy thresholds are found to be 1-4 orders of magnitude smaller than those provided in the literature for other transition scenarios. For low to moderate Reynolds numbers, the energy thresholds are found to scale with Re-2, suggesting a new scaling law for transition in the ASBL.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureFARANO, Mirko; CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro; SCHNEIDER, T. M. (Cambridge University Press (CUP), 2018)Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent ...
-
Article dans une revue avec comité de lecturePARENTE, ENZA; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (Cambridge University Press, 2022)Recently, many authors have investigated the origin and growth of turbulent bands in shear flows, highlighting the role of streaks and their inflectional instability in the process of band generation and sustainment. ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; FARANO, Mirko; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (The Royal Society Publishing, 2022-05)A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; ROBINET, Jean-Christophe; DE PALMA, Pietro; CHERUBINI, Stefania (American Physical Society, 2020)The modal and nonmodal linear stability of a stably stratified Blasius boundary layer flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal and spatial linear stability of such flow is ...
-
Article dans une revue avec comité de lectureMANCINI, C.; FARANO, Mirko; DE PALMA, Pietro; ROBINET, Jean-Christophe; CHERUBINI, Stefania (Elsevier, 2017)This work describes the development of a method for the global hydrodynamic stability analysis of diffusion flames. The low-Machnumber (LMN) Navier–Stokes (NS) equations for reacting flows are solved together with a transport ...