Cavitation in a hydraulic system: The influence of the distributor geometry on cavitation inception and study of the interactions between bubbles
Article dans une revue avec comité de lecture
Date
2015Journal
International Journal of Engine ResearchAbstract
Hydraulic systems are often subjected to pressure drops, which may lead to cavitation. In systems such as power steering, hoist loads, or ventricular assist devices, distributors are generally used. Significant pressure losses can happen in a distributor due to gap and overlap, which may lead to cavitation development. However, this issue is almost never included in the conception of the distributors. In this study, the multibubble model of the modified Rayleigh–Plesset equation is applied to the rotary distributor of an oil hydraulic system. The influence of the overlap length, the gap, the rotation speed, and distributor inlet pressure on the cavitation and particularly the interactions between bubbles at cavitation inception are studied. The study highlights a critical length of the overlap; over this value, the overlap length influences significantly the cavitation duration and the void fraction. More generally, some geometrical details have a strong influence on cavitation. Optimization of these details in engine parts, taking account the occurrence of cavitation, would be an appropriate solution to reduce its effects. The study also demonstrates that the growth of small bubbles may be delayed by the interactions with the nearby bigger ones, even if the ambient pressure is lower than their theoretical critical pressure. They eventually collapse at the first moments of the cavitation development. However, if the ambient pressure drops further, that is, beyond a critical pressure, a small bubble gains enough inertial energy to overcome these interaction phenomena and thus to grow. The growth of small bubbles increases the interactions between bubbles and slows down the growth of nearby bigger ones. The results show that the interactions between bubbles are of primary importance in the first moments of the cavitation development, which suggests that they should be taken into account in the definition of the critical pressure.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this paper, by using the system potential of two bubbles and with a special interest in the interaction by exchange of volume and without exchange of mass, a system of equations governing the evolution of two bubbles ...
-
Article dans une revue avec comité de lectureADAMA MAIGA, Mahamadou; BUISINE, Daniel; COUTIER-DELGOSHA, Olivier (American Institute of Physics, 2018)In this paper, a new model based on bubble-bubble interactions is proposed for cavitation. Unlike the well-known existing models (Rayleigh-Plesset, Gilmore), which are derived from the local balance equations in the vicinity ...
-
Article dans une revue avec comité de lectureCAIGNAERT, Guy; BOIS, Gérard; LEROUX, Jean-Baptiste; COUTIER-DELGOSHA, Olivier (American Society of Mechanical Engineers, 2012)Effects of the blade number on the performance of a rocket engine turbopump inducer are investigated in the present paper. For that purpose, two inducers characterized by three blades and five blades, respectively, were ...
-
Article dans une revue avec comité de lectureCAIGNAERT, Guy; BOIS, Gérard; DAZIN, Antoine; COUTIER-DELGOSHA, Olivier (HPC - Hindawi Publishing Corporation, 2012)The cavitating behavior of a four-blade inducer tested in the LML laboratory large test facility is considered in the present paper. Experimental investigations based on unsteady pressure measurements and records from a ...
-
Communication avec acteALLAB, Yacine; KINDINIS, Andrea; BAYEUL-LAINÉ, Annie-Claude; SIMONET, Sophie; COUTIER-DELGOSHA, Olivier (2014)More than a well-being, providing a good Indoor Climate Quality (ICQ) in education buildings is necessary for students’ health and in order to maximize academic results. In the context of a research focusing on hybrid ...