• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating the parameters of a generalized lambda distribution

Article dans une revue avec comité de lecture
Auteur
FOURNIER, Benjamin
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
211915 Mechanics surfaces and materials processing [MSMP]
RUPIN, Nicolas
1167 Laboratoire de Mécanique des Solides [LMS]
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
BIGERELLE, Maxence
NAJJAR, Denis
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
IOST, Alain
211915 Mechanics surfaces and materials processing [MSMP]
11230 Laboratoire de Métallurgie Physique et Génie des Matériaux [LMPGM]
WILCOX, R

URI
http://hdl.handle.net/10985/10868
DOI
10.1016/j.csda.2006.09.043
Date
2007
Journal
Computational Statistics and Data Analysis

Résumé

The method of moments is a popular technique for estimating the parameters of a generalized lambda distribution (GLD), but published results suggest that the percentile method gives superior results. However, the percentile method cannot be implemented in an automatic fashion, and automatic methods, like the starship method, can lead to prohibitive execution time with large sample sizes. A new estimation method is proposed that is automatic (it does not require the use of special tables or graphs), and it reduces the computational time. Based partly on the usual percentile method, this new method also requires choosing which quantile u to use when fitting a GLD to data. The choice for u is studied and it is found that the best choice depends on the final goal of the modeling process. The sampling distribution of the new estimator is studied and compared to the sampling distribution of estimators that have been proposed. Naturally, all estimators are biased and here it is found that the bias becomes negligible with sample sizes n⩾2×103. The .025 and .975 quantiles of the sampling distribution are investigated, and the difference between these quantiles is found to decrease proportionally to View the MathML source. The same results hold for the moment and percentile estimates. Finally, the influence of the sample size is studied when a normal distribution is modeled by a GLD. Both bounded and unbounded GLDs are used and the bounded GLD turns out to be the most accurate. Indeed it is shown that, up to n=106, bounded GLD modeling cannot be rejected by usual goodness-of-fit tests.

Fichier(s) constituant cette publication

Nom:
MSMP_CSDA_IOST_2007.pdf
Taille:
1.110Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Comments on the mixture detection rule used in SPC control charts 
    Article dans une revue avec comité de lecture
    FOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain (Taylor & Francis, 2007)
    When calculating independently the false alarm rate of the eight usual runs rules used in SPC control chart, it appears that the proposed rule designed to detect mixture patterns corresponds to a Type-I error strongly lower ...
  • Application of Lambda Distributions and Bootstrap analysis to the prediction of fatigue lifetime and confidence intervals 
    Article dans une revue avec comité de lecture
    FOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain (Elsevier, 2006)
    Dealing with fatigue lifetime prediction, this paper aims to report on a new statistical method combining the Lambda Distributions and the Bootstrap technique. This method is first applied for determining the Probability ...
  • Application of the generalized lambda distributions in a statistical process control methodology 
    Article dans une revue avec comité de lecture
    FOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain (Elsevier, 2006)
    In statistical process control (SPC) methodology, quantitative standard control charts are often based on the assumption that the observations are normally distributed. In practice, normality can fail and consequently the ...
  • Mesure de la Pertinence de la Physique Multi-échelle Génie Logiciel et Mesures Statistiques Projet CETIM 
    Communication avec acte
    IOST, Alain; ZAHOUANI, Hassan; ANSELME, Karine; NAJJAR, Denis; GUILLEMOT, Gildas; HAGEGE, Benjamin; JOURANI, Abdeljalil; REVEL, Phllippe; MAZERAN, Pierre-Emmanuel; BIGERELLE, Maxence; ccEL MANSORI, Mohamed; ccCOOREVITS, Thierry (Université de Poitiers, 2007)
    L'objet principal des études en morphologie des surfaces consiste à résumer l'information de manière optimale. Dans nos études, nous étudions plus particulièrement la signification physique, les méthodes numériques et les ...
  • A multi-scale approach of roughness measurements: Evaluation of the relevant scale 
    Article dans une revue avec comité de lecture
    VAN GORP, Adrien; BIGERELLE, Maxence; GRELLIER, Alain; IOST, Alain; NAJJAR, Denis (Elsevier, 2007)
    This paper proposes a new multi-scale measurement approach performed to compare the surface roughness and the visual aspect of polished surfaces. In this investigation, five specimens of glass moulds presenting different ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales