Linearization and implementation of venu model in small strain theory for polyamide 6.6
Conférence invitée
Date
2016Abstract
The so-called VENU model is a visco-hyperelastic constitutive model, designed for amorphous rubbery polymers, which is based on an original approach initially developed by N. Billon (J. Appl. Polym. Sci. 125:4390-4401, 2012) and extended by A. Maurel-Pantel et al. (Int. J. Plast. 67:102126, 2015) to three-dimensional thermomechanical framework. In the aforementioned references, the constitutive equations and thermodynamical framework are presented within large deformation theory. However, in fatigue tests of polymeric composites significant temperature gradients are noticed despite the fact that the measured strains are within the small strain theory. In addition, well established techniques and tools of micromechanics for polymeric composites are applicable in small deformation regions. These observations render important the reduction of the VENU model in the case of linear strains. Here, a method is proposed for the reduction of the VENU model to small strain theory. A proper numerical scheme is also provided, based on the so-called return-mapping algorithm. The model capabilities are illustrated by comparing numerical calculations with available experimental data for polyamide 66.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureANAGNOSTOU, Dimitrios; CHATZIGEORGIOU, George; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2018)The aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: ...
-
Article dans une revue avec comité de lectureACHOUR, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph (Elsevier, 2015)In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit ...
-
Communication avec acteCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (2018)The present work proposes a 3D model, based on the thermodynamical coupling of different strain mechanisms such as the forward and reverse phase transformation, the martensitic reorientation, the transformation-introduced ...
-
Conférence invitéeCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (Scheven Malte von; Keip Marc-André; Karajan Nils, 2017)Shape memory alloys (SMAs) are exploited in several innovative applications such as biocompatible actuators experiencing up to large number of cyclic loads. However, the description of the SMA cyclic response is still ...
-
Communication avec acteTIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; CHEMISKY, Yves; MERAGHNI, Fodil (2019)Le présent article propose une approche multi-échelles par éléments finis (FE 2 ). Elle est basée sur le principe d’homogénéisation périodique pour les problèmes thermo-mécaniques fortement couplés. Le but de ce travail ...