Linearization and implementation of venu model in small strain theory for polyamide 6.6
Conférence invitée
Author
Date
2016Abstract
The so-called VENU model is a visco-hyperelastic constitutive model, designed for amorphous rubbery polymers, which is based on an original approach initially developed by N. Billon (J. Appl. Polym. Sci. 125:4390-4401, 2012) and extended by A. Maurel-Pantel et al. (Int. J. Plast. 67:102126, 2015) to three-dimensional thermomechanical framework. In the aforementioned references, the constitutive equations and thermodynamical framework are presented within large deformation theory. However, in fatigue tests of polymeric composites significant temperature gradients are noticed despite the fact that the measured strains are within the small strain theory. In addition, well established techniques and tools of micromechanics for polymeric composites are applicable in small deformation regions. These observations render important the reduction of the VENU model in the case of linear strains. Here, a method is proposed for the reduction of the VENU model to small strain theory. A proper numerical scheme is also provided, based on the so-called return-mapping algorithm. The model capabilities are illustrated by comparing numerical calculations with available experimental data for polyamide 66.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: ...
-
Article dans une revue avec comité de lectureThe current work deals with periodic thermomechanical composite media, in which the material constituents are considered to obey the generalized standard materials laws. The aim is to provide a proper homogenization framework ...
-
Conférence invitéeCHATZIGEORGIOU, George; CHENG, Long; CHEMISKY, Yves; MERAGHNI, Fodil (Scheven Malte von; Keip Marc-André; Karajan Nils, 2017)Shape memory alloys (SMAs) are exploited in several innovative applications such as biocompatible actuators experiencing up to large number of cyclic loads. However, the description of the SMA cyclic response is still ...
-
Conférence invitéeThe current work deals with periodic composite media undergoing fully coupled thermomechanical loading. In these composites the material constituents are considered to obey the generalized standard materials laws. The aim ...
-
Conférence invitéeThe modern technological challenges on the engineering industry and the extensive advances in the materials science have caused a tremendous increase in the development of composites. Plenty of engineering and biomechanics ...