• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localized necking predictions based on rate-independent self-consistent polycrystal plasticity: Bifurcation analysis versus imperfection approach

Article dans une revue avec comité de lecture
Auteur
AKPAMA, Holanyo K.
ccBEN BETTAIEB, Mohamed
ccABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS

URI
http://hdl.handle.net/10985/11856
DOI
10.1016/j.ijplas.2017.02.001
Date
2017
Journal
International Journal of Plasticity

Résumé

The present study focuses on the development of a relevant numerical tool for predicting the onset of localized necking in polycrystalline aggregates. The latter are assumed to be representative of thin metal sheets. In this tool, a micromechanical model, based on the rate-independent self-consistent multi-scale scheme, is developed to accurately describe the mechanical behavior of polycrystalline aggregates from that of their single crystal constituents. In the current paper, the constitutive framework at the single crystal scale follows a finite strain formulation of the rate-independent theory of crystal elastoplasticity. To predict the occurrence of localized necking in polycrystalline aggregates, this micromechanical modeling is combined with two main strain localization approaches: the bifurcation analysis and the initial imperfection method. The formulation of both strain localization indicators takes into consideration the plane stress conditions to which thin metal sheets are subjected during deformation. From a numerical point of view, strain localization analysis with this crystal plasticity approach can be viewed as a strongly nonlinear problem. Hence, several numerical algorithms and techniques are developed and implemented in the aim of efficiently solving this non-linear problem. Various simulation results obtained by the application of the developed numerical tool are presented and extensively discussed. It is demonstrated from these results that the predictions obtained with the MarciniakeKuczynski procedure tend towards those yielded by the bifurcation theory, when the initial imperfection ratio tends towards zero. Furthermore, the above result is shown to be valid for both scale-transition schemes, namely the full-constraint Taylor model and self-consistent scheme.

Fichier(s) constituant cette publication

Nom:
LEM3_IJP_2017_BENBETTAIEB.pdf
Taille:
5.594Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Numerical integration of rate-independent BCC single crystal plasticity models: comparative study of two classes of numerical algorithms 
    Article dans une revue avec comité de lecture
    AKPAMA, Holanyo K.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Wiley, 2016)
    In an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
  • Numerical integration of rate-independent BCC single crystal plasticity models: comparative study of two classes of numerical algorithms 
    Article dans une revue avec comité de lecture
    AKPAMA, Holanyo K.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Wiley, 2016)
    In an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
  • Influence of the Yield Surface Curvature on the Forming Limit Diagrams Predicted by Crystal Plasticity Theory 
    Article dans une revue avec comité de lecture
    AKPAMA, Holanyo K.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Argentinean Association of Computational Mechanics, Brazilian Association of Computational Mechanics, Mexican Association of Numerical Methods in Engineering and Applied Sciences, 2016)
    The aim of this paper is to investigate the impact of the microscopic yield surface (i.e., at the single crystal scale) on the forming limit diagrams (FLDs) of face centred cubic (FCC) materials. To predict these FLDs, ...
  • A comparative study of Forming Limit Diagrams predicted by two different plasticity theories involving vertex effects 
    Article dans une revue avec comité de lecture
    AKPAMA, Holanyo K.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Trans Tech Publications, 2015)
    The main objective of this contribution is to compare the Forming Limit Diagrams (FLDs) predicted by the use of two different vertex theories. The first theory is micromechanical and is based on the use of the ...
  • Prediction of Localized Necking Based on Crystal Plasticity: Comparison of Bifurcation and Imperfection Approaches 
    Article dans une revue avec comité de lecture
    AKPAMA, Holanyo K.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Trans Tech Publications, 2016)
    In the present work, a powerful modeling tool is developed to predict and analyze the onset of strain localization in polycrystalline aggregates. The predictions of localized necking are based on two plastic instability ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales