Multiscale modeling of periodic dissipative composites under thermomechanical loading conditions
Conférence invitée
Date
2017Abstract
The modern technological challenges on the engineering industry and the extensive advances in the materials science have caused a tremendous increase in the development of composites. Plenty of engineering and biomechanics applications demand smart materials and structures which combine high strength, multifunctionality and durability. At the same time, a crucial parameter in the choice of the most suitable composite material is the long lifetime during repeated loading cycles, thus fatigue is an essential parameter in design. To achieve the high demands in the modern applications, composite materials often operate under thermomechanical conditions that cause the appearance of dissipative phenomena like plasticity, viscoelasticity-viscoplasticity and damage. The present work deals with periodic composite media subjected to fully coupled thermomechanical loading. The material constituents of these composites are assumed to belong in the general class of generalized standard materials laws. The aim is to provide a proper homogenization framework that describes accurately the basic conservation laws in both microscopic and macroscopic levels. The study is based on the asymptotic expansion homogenization technique, which permits to deduce useful results about the energy potentials that characterize the material response in both scales. Moreover, the numerical implementation is based on an incremental, linearized formulation. This formulation allows to identify proper thermomechanical 3D tangent moduli for the macroscale problem and thus design an implicit computational scheme.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe current work deals with periodic thermomechanical composite media, in which the material constituents are considered to obey the generalized standard materials laws. The aim is to provide a proper homogenization framework ...
-
Conférence invitéeThe current work deals with periodic composite media undergoing fully coupled thermomechanical loading. In these composites the material constituents are considered to obey the generalized standard materials laws. The aim ...
-
Ouvrage scientifiqueCHATZIGEORGIOU, George; CHARALAMBAKIS, Nicolas; CHEMISKY, Yves; MERAGHNI, Fodil (ISTE-Elsevier, 2018)This book presents theoretical and numerical tools for studying materials and structures under fully coupled thermomechanical conditions, with a special focus on composites. The authors cover many aspects of the modeling ...
-
Article dans une revue avec comité de lectureCHARALAMBAKIS, Nicolas; CHATZIGEORGIOU, George; CHEMISKY, Yves; MERAGHNI, Fodil (Springer Verlag, 2017)In this paper, a review of papers on mathematical homogenization of dissipative composites under small strains and on the interplay between homogenization procedure and dissipation due to mechanical work is presented. ...
-
Article dans une revue avec comité de lectureThis paper proposes a micromechanical approach aimed at identifying the response of unidirectional fuzzy fiber composites undergoing inelastic fields. Fuzzy fibers are reinforcement fibers coated with radially aligned ...