Damage indexes comparison for the structural health monitoring of a stiffened composite plate
Communication avec acte
Date
2017Abstract
Stiffened composite structures are very appealing in aeronautic applications due to their unique stiffness to mass ratio. However, they are also prone to various and complex damage scenario (stiffener debonding, impact damage...) and to complex wave propagation phenomena due to the presence of the stiffener. Consequently, autonomous monitoring of such structure is still a real issue. The process of monitoring in real-time a structure is referred to structural health monitoring (SHM) and consists of several steps: damage detection, localization, classification, and quantification. The focus is put here on the damage detection step of SHM. To detect damages, stiffened composite structures are equipped with piezoelectric elements that act both as sensors and actuators. A database at the unknown (and possibly damaged state) is then compared to a healthy reference database. Several damage indexes (DIs) designed for detection are extracted from this comparison. The SHM process classically relies on four sequential steps: damage detection, localization, classification, and quantification. The most critical step of such process is the damage detection step since it is the first one and because performances of the following steps depend on it. A common method to design such a detector consists in relying on a statistical characterization of the damage indexes available in the healthy behavior of the structure. On the basis of this information, a decision threshold can then be computed in order to achieve a desired probability of false alarm (PFA). In this paper, the performances of these DIs with respect to damage detection in a stiffened composite plate are studied. Results show that DIs based on energy consideration perform better than the ones based on cross-correlation. Furthermore Fourier-transform based DIs appear to be insensitive to the presence of damage in such structure.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteJAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil;
MECHBAL, Nazih;
RÉBILLAT, Marc (NTD, 2019)
In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ... -
Communication avec acteStructural damages can result in nonlinear dynamical responses. Thus, estimating the nonlinearities generated by damages potentially allows detecting them. In this paper, an original approach called the ES2D (Exponential ...
-
Communication avec acteHMAD, Ouadie;
MECHBAL, Nazih;
RÉBILLAT, Marc (International Workshop on Structural Health Monitoring, 2015)
Structural Health Monitoring (SHM) system offers new approaches to interrogate the integrity of structures. The most critical step of such systems is the damage detection step since it is the first and because performances ... -
Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas Communication avec acteHigh voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have ...
-
Communication avec acte— FEM modeling of piezoelectric patches used as actuators and sensors for SHM applications. — Test/analysis correlation of temperature effects in piezoelectric materials and glue — Numerical methods associated with the ...