Improving Small-Signal Stability of an MMC With CCSC by Control of the Internally Stored Energy
Article dans une revue avec comité de lecture
Date
2018Journal
IEEE Transactions on Power DeliveryAbstract
The DC-side dynamics of Modular Multilevel Converters (MMCs) can be prone to poorly damped oscillations or stability problems when the second harmonic components of the arm currents are mitigated by a Circulating Current Suppression Controller (CCSC). This paper demonstrates that the source of these oscillations is the uncontrolled interaction of the DC-side current and the internally stored energy of the MMC, as resulting from the CCSC. Stable operation and improved performance of the MMC control system can be ensured by introducing closed loop control of the energy and the DC-side current. The presented analysis relies on a detailed state-space model of the MMC which is formulated to obtain constant variables in steady state. The resulting state-space equations can be linearized to achieve a Linear Time Invariant (LTI) model, allowing for eigenvalue analysis of the small-signal dynamics of the MMC. Participation factor analysis is utilized to identify the source of the poorly damped DC-side oscillations, and indicates the suitability of introducing control of the internal capacitor voltage or the corresponding stored energy. An MMC connected to a DC power source with an equivalent capacitance, and operated with DC voltage droop in the active power flow control, is used as an example for the presented analysis. The developed small-signal models and the improvement in small-signal dynamics achieved by introducing control of the internally stored energy are verified by time-domain simulations in comparison to an EMT simulation model of an MMC with 400 sub-modules per arm.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureFREYTES, Julian; AKKARI, Samy; RAULT, Pierre; BELHAOUANE, Mohamed Moez; COLAS, Frédéric; GUILLAUD, Xavier; GRUSON, Francois (Institute of Electrical and Electronics Engineers, 2019)This article deals with DC voltage dynamics of Multi-Terminal HVDC grids (MTDC) with energy-based controlled Modular Multilevel Converters (MMC) adopting the commonly used power-voltage droop control technique for power ...
-
Représentation Energétique Macroscopique et Diagramme PQ des Convertisseurs Modulaires Multi-niveaux Communication avec acteSAMIMI, Shabab; GRUSON, Francois; DELARUE, Philippe; GUILLAUD, Xavier; COLAS, Frederic (2014-10-08)Le système étudié dans cet article est un convertisseur Modulaires Multi-Niveaux. Dans une première partie, l'utilisation de la Représentation Energétique Macroscopique (REM) permet de mettre en évidence les couplages ...
-
Communication avec acteQORIA, Taoufik; COLAS, Frédéric; GUILLAUD, Xavier; DEBRY, Marie-Sophie; PREVOST, Thierry; GRUSON, Francois (IEEE, 2018)From the origin of the grid, energy has been delivered to electrical loads mainly by synchronous machines. All the main rules to manage the grid have been based on the electromechanical behavior of these machines which ...
-
Communication avec acteQORAI, Taoufik; GRUSON, François; COLAS, Frédéric; GUILLAUD, Xavier; DEBRY, M.-S.; PREVOST, T. (IEEE, 2018-06)From the origin of the grid, energy has been delivered to electrical loads mainly by synchronous machines. All the main rules to manage the grid have been based on the electromechanical behavior of these machines which ...
-
On Comprehensive Description and Analysis of MMC Control Design: Simulation and Experimental Study Article dans une revue avec comité de lectureZHANG, Haibo; BELHAOUANE, Mohamed Moez; COLAS, Frederic; KADRI RIAD; GUILLAUD, Xavier; GRUSON, Francois (Institute of Electrical and Electronics Engineers, 2020)This paper presents an evolution of control systems of Modular Multilevel Converters (MMCs) focusing on the internal voltages and currents dynamics. MMCs have passive components that create extra dynamics compared to ...