A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials
Article dans une revue avec comité de lecture
Date
2018Journal
Additive ManufacturingAbstract
This original work proposes to investigate the transposition of crystallography rules to cubic lattice architectured materials to generate new 3D porous structures. The application of symmetry operations provides a complete and convenient way to configure the lattice architecture with only two parameters. New lattice structures were created by slipping from the conventional Bravais lattice toward non-compact complex structures. The resulting stiffness of the porous materials was thoroughly evaluated for all the combinations of architecture parameters. This exhaustive study revealed attractive structures having high specific stiffness, up to twice as large as the usual octet-truss for a given relative density. It results in a relationship between effective Young modulus and relative density for any lattice structure. It also revealed the opportunity to generate auxetic structures at will, with a controlled Poisson ratio. The collection of the elastic properties for all the cubic structures into 3D maps provides a convenient tool for lattice materials design, for research, and for mechanical engineering. The resulting mechanical properties are highly variable according to architecture, and can be easily tailored for specific applications using the simple yet powerful formalism developed in this work.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureLOHMULLER, Paul; FAVRE, Julien; PIOTROWSKI, Boris; KENZARI, Samuel; LAHEURTE, Pascal (MDPI, 2018)The continuous design of cubic lattice architecture materials provides a wide range of mechanical properties. It makes possible to control the stress magnitude and the local maxima in the structure. This study reveals some ...
-
Article dans une revue avec comité de lectureLOHMULLER, Paul; FAVRE, Julien; KENZARI, Samuel; PIOTROWSKI, Boris; PELTIER, Laurent; LAHEURTE, Pascal (Elsevier, 2019)This article investigates the elastic properties of a large panel of lattice architectures using a continuous description of geometry. The elastic constants of the orthotropic material are determined, and discussed in terms ...
-
Ultrasonic investigation of the effect of compressive strains on 3D periodic bi-material structures Article dans une revue avec comité de lectureCHEHAMI, Lynda; LIU, Jingfei; POMAREDE, Pascal; LOHMULLER, Paul; PIOTROWSKI, Boris; MERAGHNI, Fodil; DECLERCQ, Nico F. (EDP Sciences, 2022-06)Due to the specific elastic properties such as high stiffness to mass ratio, regular microstructure materials are widely used in the industry. The need for nondestructive evaluation is ubiquitous to ensure material quality. ...
-
Article dans une revue avec comité de lectureCHALON, Antoine; FAVRE, Julien; PIOTROWSKI, Boris; LANDMANN, V.; GRANDMOUGIN, David; MAUREIRA, Juan Pablo; LAHEURTE, Pascal; TRAN, Nguyen (Elsevier, 2018)Study: Implantation of a Left Ventricular Assist Device (LVAD) may produce both excessive local tissue stress and resulting strain-induced tissue rupture that are potential iatrogenic factors influencing the success of the ...
-
Article dans une revue avec comité de lecturePELTIER, Laurent; LOHMULLER, Paul; MERAGHNI, Fodil; BERVEILLER, Sophie; PATOOR, Etienne; LAHEURTE, Pascal (Springer Science and Business Media LLC, 2020)New high temperature shape memory alloyswith five or more elements are under development and present attractive performances for several functional applications. These active metallic materials are called high entropy and ...