Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures
Article dans une revue avec comité de lecture
Date
2018Journal
Composite StructuresAbstract
In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The sensitivity to the strain rate requires an homogenization scheme to bridge the scales between the macroscopic boundary conditions applied and the local evaluation of the strain rate. In the present work, the effective response of composite materials where the matrix has a local elasto-viscoplastic behavior with ductile damage are analyzed using periodic homogenization, solving simultaneously finite element problems at the microscopic scale (unit cell) and at the macroscopic scale. This approach can integrate any kind of periodic microstructure with any type of non-linear behavior for the constituents (without the consideration of non-linear geometric effects), allowing to treat complex mechanisms that can occur in every phase and at their interface. The numerical implementation of this simulation strategy has been performed with a parallel computational technique in ABAQUS/Standard,with the implementation of a set of dedicated scripts. The homogenization process is performed using a user-defined constitutive law that solve a set full-field non-linear simulations of a Unit Cell and perform the necessary homogenization of the mechanical quantities. The effectiveness of the method is demonstrated with three examples of 3D composite structures with plastic or viscoplastic and ductile damage matrix. In the first example, the numerical results obtained by this full field approach are compared with a semi-analytical solution on elastoplastic multilayer composite structure. The second example investigates the macroscopic response of a complex viscoplastic composite structure with ductile damage and is compared with the mean field Mori-Tanaka method. Finally, 3D corner structure consisting of periodically aligned short fibres composite is analysed under complex loading path. These numerical simulations illustrate the capabilities of the FE2 strategy under non-linear regime, when time dependent constitutive models describe the response of the constituents
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Conférence invitéeTIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PIOTROWSKI, Boris; CHEMISKY, Yves; PRAUD, Francis; MERAGHNI, Fodil (2017)Dans ce papier, une technique de modélisation multi-échelle (EF2) basée sur le principe d’homogénéisation périodique a été développée pour décrire le comportement des structures composites 3D avec un comportement ...
-
Communication avec acteLe présent article propose une approche multi-échelles par éléments finis (FE 2 ). Elle est basée sur le principe d’homogénéisation périodique pour les problèmes thermo-mécaniques fortement couplés. Le but de ce travail ...
-
Article dans une revue avec comité de lectureThe current paper presents a two scale Finite Element approach (FE 2 ), adopting the periodic homogenization method, for fully coupled thermo-mechanical processes. The aim of this work is to predict the overall response ...
-
Article dans une revue avec comité de lectureThis paper presents an experimental approach aimed at analyzing and validating a two-scale nonlinear Finite Element (FE 2 ) simulation of a 3D composite structure. The studied composite material consists of polyamide ...
-
Article dans une revue avec comité de lectureOUKFIF, H.; TIKARROUCHINE, El-Hadi; LOUAR, M-A.; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Elsevier BV, 2024-02)In the present paper, a two-scale FE technique based on periodic homogenization theory is investigated to predict the macroscopic non-linear behavior of polymer matrix composite structures. The computational technique ...