Successive bifurcations in a fully three-dimensional open cavity flow
Article dans une revue avec comité de lecture
Date
2018Journal
Journal of Fluid MechanicsAbstract
The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear understanding of the first two bifurcations occurring in the flow. The first bifurcation is characterized by the emergence of Taylor–Görtler-like vortices resulting from a centrifugal instability of the primary vortex core. Further increasing the Reynolds number eventually triggers self-sustained periodic oscillations of the flow in the vicinity of the spanwise end walls of the cavity. This secondary instability causes the emergence of a new set of Taylor–Görtler vortices experiencing a spanwise drift directed toward the spanwise end walls of the cavity. While a two-dimensional stability analysis would fail to capture this secondary instability due to the neglect of the lateral walls, it is the first time to our knowledge that this drifting of the vortices can be entirely characterized by a three-dimensional linear stability analysis of the flow. Good agreements with experimental observations and measurements strongly support our claim that the initial stages of the transition to turbulence of three-dimensional open cavity flows are solely governed by modal instabilities.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecturePICELLA, Francesco; BUCCI, Michele Alessandro; CHERUBINI, Stefania; ROBINET, Jean-Christophe (Elsevier, 2019)Research on laminar-turbulent transition of wall-bounded parallel flows has usually focused on controlled scenarios where transition is triggered by perturbations having simple shapes and spectra. These disturbances strongly ...
-
Article dans une revue avec comité de lecturePICELLA, Francesco; CHERUBINI, Stefania; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2019)Superhydrophobic surfaces are capable of trapping gas pockets within the micro-roughnesses on their surfaces when submerged in a liquid, with the overall effect of lubricating the flow on top of them. These bio-inspired ...
-
Article dans une revue avec comité de lectureVariational optimization has been recently applied to nonlinear systems with many degrees of freedom such as shear flows undergoing transition to turbulence. This technique has unveiled powerful energy growth mechanisms ...
-
Article dans une revue avec comité de lecturePICELLA, Francesco; ROBINET, Jean-Christophe; CHERUBINI, Stefania (Cambridge University Press (CUP), 2020-08)Superhydrophobic surfaces dramatically reduce the skin friction of overlying liquid flows, providing a lubricating layer of gas bubbles trapped within their surface nano-sculptures. Under wetting-stable conditions, different ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Elsevier, 2015)The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...