Optimal perturbation for two-dimensional vortex systems: route to non-axisymmetric state
Article dans une revue avec comité de lecture
Date
2018Journal
Journal of Fluid MechanicsAbstract
We investigate perturbations that maximize the gain of disturbance energy in a two-dimensional isolated vortex and a counter-rotating vortex pair. The optimization is carried out using the method of Lagrange multipliers. For low initial energy of the perturbation ( ), the nonlinear optimal perturbation/gain is found to be the same as the linear optimal perturbation/gain. Beyond a certain threshold , the optimal perturbation/gain obtained from linear and nonlinear computations are different. There exists a range of for which the nonlinear optimal gain is higher than the linear optimal gain. For an isolated vortex, the higher value of nonlinear optimal gain is attributed to interaction among different azimuthal components, which is otherwise absent in a linearized system. Spiral dislocations are found in the nonlinear optimal perturbation at the radial location where the most dominant wavenumber changes. Long-time nonlinear evolution of linear and nonlinear optimal perturbations is studied. The evolution shows that, after the initial increment of perturbation energy, the vortex attains a quasi-steady state where the mean perturbation energy decreases on a slow time scale. The quasi-steady vortex state is non-axisymmetric and its shape depends on the initial perturbation. It is observed that the lifetime of a quasi-steady vortex state obtained using the nonlinear optimal perturbation is longer than that obtained using the linear optimal perturbation. For a counter-rotating vortex pair, the mechanism that maximizes the energy gain is found to be similar to that of the isolated vortex. Within the linear framework, the optimal perturbation for a vortex pair can be either symmetric or antisymmetric, whereas the structure of the nonlinear optimal perturbation, beyond the threshold, is always asymmetric. No quasi-steady state for a counter-rotating vortex pair is observed.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureNAVROSE; JOHNSON, Author H. G.; BRION, Véronique; JACQUIN, Laurent; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2018)We investigate perturbations that maximize the gain of disturbance energy in a two-dimensional isolated vortex and a counter-rotating vortex pair. The optimization is carried out using the method of Lagrange multipliers. ...
-
Article dans une revue avec comité de lectureBÖLLE, Tobias; BRION, Vincent; SIPP, Denis; JACQUIN, Laurent; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2020)The present work investigates the excitation process by which free-stream disturbances are transformed into vortex-core perturbations. This problem of receptivity is modelled in terms of the resolvent in frequency space ...
-
Article dans une revue avec comité de lectureFADLA, Fawzi; ALIZARD, Frédéric; KEIRSBULCK, Laurent; LAVAL, Jean-Philippe; FOUCAUT, Jean-Marc; CHOVET, Camila; LIPPERT, Marc; ROBINET, Jean-Christophe (Elsevier, 2019)Dynamical behavior of the turbulent channel flow separation induced by a wall-mounted two-dimensional bump is studied, with an emphasis on unsteadiness characteristics of vortical motions evolving in the separated flow. ...
-
Article dans une revue avec comité de lectureBECKER, Eric; BIGOT, Regis; LANGLOIS, Laurent; FAVIER, Véronique; PIERRET, Jean-Christophe; CEZARD, Pierre (Springer Verlag, 2008)Since always, Industry minimizes manufacturing process plan and increases mechanical behaviour. In this topic, the thixoforging process offers important perspectives especially steel thixoforging. It is on the way of ...
-
Article dans une revue avec comité de lectureBECKER, Eric; CEZARD, Pierre; BIGOT, Regis; LANGLOIS, Laurent; FAVIER, Véronique; PIERRET, Jean-Christophe (Trans Tech Publications Ltd, 2008)Steel thixoforging process combines the advantages of performing parts having highly complex shapes and good mechanical properties. These advantages result from the shear thinning flow behaviour of semi-solids due to ...