• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications.

Article dans une revue avec comité de lecture
Author
LAUZERAL, Nathan
111023 École Centrale de Nantes [ECN]
BORZACCHIELLO, Domenico
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
KUGLER, Michael
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
RÉMOND, Yves
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
GEORGE, Daniel
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
HOSTETTLER, Alexandre
302738 l'Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD)
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/14639
DOI
0.1016/j.cmpb.2019.01.003
Date
2019
Journal
Computer Methods and Programs in Biomedicine

Abstract

Background and objective: This paper focuses on computer simulation aspects of Digital Twin models in the medical framework. In particular, it addresses the need of fast and accurate simulators for the mechanical response at tissue and organ scale and the capability of integrating patient-specific anatomy from medical images to pinpoint the individual variations from standard anatomical models. Methods: We propose an automated procedure to create mechanical models of the human liver with patient-specific geometry and real time capabilities. The method hinges on the use of Statistical Shape Analysis to extract the relevant anatomical features from a database of medical images and Model Order Reduction to compute an explicit parametric solution for the mechanical response as a function of such features. The Sparse Subspace Learning, coupled with a Finite Element solver, was chosen to create low-rank solutions using a non-intrusive sparse sampling of the feature space. Results: In the application presented in the paper, the statistical shape model was trained on a database of 385 three dimensional liver shapes, extracted from medical images, in order to create a parametrized representation of the liver anatomy. This parametrization and an additional parameter describing the breathing motion in linear elasticity were then used as input in the reduced order model. Results show a consistent agreement with the high fidelity Finite Element models built from liver images that were excluded from the training dataset. However, we evidence in the discussion the difficulty of having compact shape parametrizations arising from the extreme variability of the shapes found in the dataset and we propose potential strategies to tackle this issue. Conclusions: A method to represent patient-specific real-time liver deformations during breathing is proposed in linear elasticity. Since the proposed method does not require any adaptation to the direct Finite Element solver used in the training phase, the procedure can be easily extended to more complex non-linear constitutive behaviors - such as hyperelasticity - and more general load cases. Therefore it can be integrated with little intrusiveness to generic simulation software including more sophisticated and realistic models.

Files in this item

Name:
PIMM-CMPB-LAUZERAL-2019.pdf
Size:
2.613Mb
Format:
PDF
Embargoed until:
2019-07-31
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Shape parametrization of bio-mechanical finite element models based on medical images 
    Article dans une revue avec comité de lecture
    LAUZERAL, Nathan; BORZACCHIELLO, Domenico; KUGLER, Michaël; GEORGE, Daniel; RÉMOND, Yves; HOSTETTLER, Alexandre; ccCHINESTA SORIA, Francisco (Taylor & Francis, 2019)
    The main objective of this study is to combine the statistical shape analysis with a morphing procedure in order to generate shape-parametric finite element models of tissues and organs and to explore the reliability and ...
  • Non-intrusive Sparse Subspace Learning for Parametrized Problems 
    Article dans une revue avec comité de lecture
    BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    We discuss the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive ...
  • Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach 
    Article dans une revue avec comité de lecture
    MUHAMMAD HARIS, Malik; BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper ...
  • Tensor Representation of Non-linear Models Using Cross Approximations 
    Article dans une revue avec comité de lecture
    AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; KOLLEPARA, Kiran S.; HUERTA, Antonio; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. ...
  • Induction machine model with finite element accuracy for condition monitoring running in real time using hardware in the loop system 
    Article dans une revue avec comité de lecture
    SAPENA-BAÑÓ, Angel; AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; PUCHE-PANADERO, Rubén; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    Most industrial processes are run by induction machines (IMs). Condition monitoring of IM assures their continuity of service, and it may avoid highly costly breakdowns. Among the methods for condition monitoring, on-line ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales