A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications.
Article dans une revue avec comité de lecture
Auteur
KUGLER, Michael
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
RÉMOND, Yves
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
GEORGE, Daniel
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
217648 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
Date
2019Journal
Computer Methods and Programs in BiomedicineRésumé
Background and objective: This paper focuses on computer simulation aspects of Digital Twin models in the medical framework. In particular, it addresses the need of fast and accurate simulators for the mechanical response at tissue and organ scale and the capability of integrating patient-specific anatomy from medical images to pinpoint the individual variations from standard anatomical models. Methods: We propose an automated procedure to create mechanical models of the human liver with patient-specific geometry and real time capabilities. The method hinges on the use of Statistical Shape Analysis to extract the relevant anatomical features from a database of medical images and Model Order Reduction to compute an explicit parametric solution for the mechanical response as a function of such features. The Sparse Subspace Learning, coupled with a Finite Element solver, was chosen to create low-rank solutions using a non-intrusive sparse sampling of the feature space. Results: In the application presented in the paper, the statistical shape model was trained on a database of 385 three dimensional liver shapes, extracted from medical images, in order to create a parametrized representation of the liver anatomy. This parametrization and an additional parameter describing the breathing motion in linear elasticity were then used as input in the reduced order model. Results show a consistent agreement with the high fidelity Finite Element models built from liver images that were excluded from the training dataset. However, we evidence in the discussion the difficulty of having compact shape parametrizations arising from the extreme variability of the shapes found in the dataset and we propose potential strategies to tackle this issue. Conclusions: A method to represent patient-specific real-time liver deformations during breathing is proposed in linear elasticity. Since the proposed method does not require any adaptation to the direct Finite Element solver used in the training phase, the procedure can be easily extended to more complex non-linear constitutive behaviors - such as hyperelasticity - and more general load cases. Therefore it can be integrated with little intrusiveness to generic simulation software including more sophisticated and realistic models.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureLAUZERAL, Nathan; BORZACCHIELLO, Domenico; KUGLER, Michaël; GEORGE, Daniel; RÉMOND, Yves; HOSTETTLER, Alexandre; CHINESTA SORIA, Francisco (Taylor & Francis, 2019)The main objective of this study is to combine the statistical shape analysis with a morphing procedure in order to generate shape-parametric finite element models of tissues and organs and to explore the reliability and ...
-
Article dans une revue avec comité de lectureWe discuss the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive ...
-
Article dans une revue avec comité de lectureMUHAMMAD HARIS, Malik; BORZACCHIELLO, Domenico; AGUADO, José Vicente; CHINESTA SORIA, Francisco (Elsevier Masson, 2018)This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper ...
-
Article dans une revue avec comité de lectureAGUADO, Jose Vicente; BORZACCHIELLO, Domenico; KOLLEPARA, Kiran S.; HUERTA, Antonio; CHINESTA SORIA, Francisco (Springer Verlag, 2019)Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. ...
-
Article dans une revue avec comité de lectureSAPENA-BAÑÓ, Angel; AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; PUCHE-PANADERO, Rubén; CHINESTA SORIA, Francisco (Elsevier, 2019)Most industrial processes are run by induction machines (IMs). Condition monitoring of IM assures their continuity of service, and it may avoid highly costly breakdowns. Among the methods for condition monitoring, on-line ...