• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
  • Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer’s law and Ergun’s equation

Article dans une revue avec comité de lecture
Author
ccRADILLA, Giovanni
441232 Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
ccRODRIGUEZ DE CASTRO, Antonio
211915 Mechanics surfaces and materials processing [MSMP]

URI
http://hdl.handle.net/10985/15179
DOI
10.1016/j.advwatres.2016.12.009
Date
2017
Journal
Advances in Water Resources

Abstract

The flow of shear-thinning fluids through unconsolidated porous media is present in a number of impor- tant industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liq- uids. Therefore, predicting the pressure drop–flow rate relationship in model porous media has been the scope of major research efforts during the last decades. Although the flow of Newtonian fluids through packs of spherical particles is well understood in most cases, much less is known regarding the flow of shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimen- tal data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow rate–pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimen- tal data are then compared with predictions coming from different methods based on the extension of widely used Ergun’s equation and Forchheimer’s law to the case of shear thinning fluids, determining the accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to represent the rheology of the injected fluids results in the porous media are shown to be key aspects to successfully predict pressure drop–flow rate relationships for the inertial shear-thinning flow in packed beads.

Files in this item

Name:
MSMP_ADWR_2017_RODRIGUEZDECAST ...
Size:
1.997Mb
Format:
PDF
Embargoed until:
2018-12-14
View/Open

Collections

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Related items

Showing items related by title, author, creator and subject.

  • Non-Darcian flow experiments of shear-thinning fluids through rough-walled rock fractures 
    Article dans une revue avec comité de lecture
    ccRADILLA, Giovanni; ccRODRIGUEZ DE CASTRO, Antonio (American Geophysical Union, 2016)
    Understanding non-Darcian flow of shear-thinning fluids through rough-walled rock fractures is of vital importance in a number of industrial applications such as hydrogeology or petroleum engineering. Different laws are ...
  • Flow of yield stress and Carreau fluids through rough-walled rock fractures: Prediction and experiments 
    Article dans une revue avec comité de lecture
    ccRADILLA, Giovanni; ccRODRIGUEZ DE CASTRO, Antonio (American Geophysical Union, 2017)
    Many natural phenomena in geophysics and hydrogeology involve the flow of non-Newtonian fluids through natural rough-walled fractures. Therefore, there is considerable interest in predicting the pressure drop generated by ...
  • Using Xanthan Gum Solutions to Characterize Porous Media with the Yield Stress Fluid Porosimetry Method: Robustness of the Method and Effects of Polymer Concentration 
    Article dans une revue avec comité de lecture
    RODRIGUEZ DE CASTRO, Antonio; ccAHMADI-SENICHAULT, Azita; OMARI, Abdelaziz (Springer Verlag, 2018)
    The yield stress fluids porosimetry method (YSM)was recently presented as a simple and non-toxic potential alternative to the extensively used mercury intrusion porosimetry (MIP). The success of YSM heavily relies on the ...
  • Numerical analysis of the fluid-solid interactions during steady and oscillatory flows of non-Newtonian fluids through deformable porous media 
    Article dans une revue avec comité de lecture
    ccRODRIGUEZ DE CASTRO, Antonio; CHABANON, Morgan; GOYEAU, Benoit (Elsevier BV, 2023-05)
    The flow of non-Newtonian fluids through evolving porous media is involved in important processes including blood flow and remediation of deformable aquifers. However, the effects of a moving solid boundary and the coupling ...
  • Towards a new method of porosimetry: principles and experiments 
    Communication avec acte
    ccRODRIGUEZ DE CASTRO, Antonio; ccAHMADI-SENICHAULT, Azita; BRUNEAU, Denis; OMARI, Aziz (2013)
    Current experimental methods used to determine pore size distributions (PSD) in porous media present several drawbacks such as toxicity of employed fluids (e.g. mercury porosimetry). Theoretical basis of a new method to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales