Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions
Communication avec acte
Abstract
The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this work, we first design ORC turbine geometries by means of a fast 2-D design procedure based on the method of characteristics (MOC) for supersonic nozzles characterized by strong real gas effects. Thanks to a geometric post-processing procedure, the resulting nozzle shape is then adapted to generate an axial ORC blade vane geometry. Subsequently, the impact of uncertain operating conditions on turbine design is investigated by coupling the MOC algorithm with a Probabilistic Collocation Method (PCM) algorithm. Besides, the injector geometry generated at nominal operating conditions is simulated by means of an in-house CFD solver. The code is coupled to the PCM algorithm and a performance sensitivity analysis, in terms of adiabatic efficiency and power output, to variations of the operating conditions is carried out.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureBUFI, Elio Antonio; CINNELLA, Paola (Elsevier, 2015)This work aims at assessing different Uncertainty Quantification (UQ) methodologies for the stochastic analysis and robust design of Organic Rankine Cycle (ORC) turbines under multiple uncertainties. Precisely, we investigate ...
-
Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows Article dans une revue avec comité de lectureA novel Sparse Bayesian Learning (SBL) framework is introduced for generating parsimonious stochastic algebraic stress closures for the Reynolds-Averaged Navier–Stokes (RANS) equations from high-fidelity data. The models ...
-
Article dans une revue avec comité de lectureMERLE, Xavier; CINNELLA, Paola (Elsevier, 2015)A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...
-
Article dans une revue avec comité de lectureDE ZORDO-BANLIAT, Maximilien; MERLE, Xavier; DERGHAM, Grégory; CINNELLA, Paola (Elsevier BV, 2020-04)The Reynolds-Averaged Navier-Stokes (RANS) equations represent the computational workhorse for engineering design, despite their numerous flaws. Improving and quantifying the uncertainties associated with RANS models is ...
-
Article dans une revue avec comité de lectureMERLE, Xavier; CINNELLA, Paola (Elsevier, 2014)A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...