Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis
Article dans une revue avec comité de lecture
Date
2018Journal
AIMS Materials ScienceAbstract
Abstract: Many composite forming processes are based on the consolidation of preimpregnated preforms of different types, e.g., sheets, tapes, .... Composite plies are put in contact using different technologies and consolidation is performed by supplying heat and pressure, the first to promote molecular diffusion at the plies interface and both (heat and pressure) to facilitate the intimate contact by squeezing surface asperities. Optimal processing requires an intimate contact as large as possible between the surfaces put in contact, for different reasons: (i) first, a perfect contact becomes compulsory to make possible molecular diffusion at the interface level in order to ensure bulk properties at interfaces; (ii) second, imperfect contact conditions result in micro and meso pores located at the interface, weakening it from the mechanical point of view, where macro defects (cracks, plies delamination, etc.) are susceptible of appearing. As just indicated, the main process parameters are the applied heat and pressure, as well as the process time (associated with the laying head velocity). These parameters should be adjusted to ensure optimal consolidation, avoiding imperfect bonding or thermal degradation. However, experiments evidence that the consolidation degree is strongly dependent on the surface characteristics (roughness). The same process parameters applied to different surfaces produce very different degrees of intimate contact. The present study aims at identifying the main surface descriptors able to describe the evolution of the degree of intimate contact during processing. That knowledge is crucial for online process control in order to maximize both productivity and part quality.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureANGEL, Leon; BARASINSKI, Anais; CUETO, Elias; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Elsevier Masson, 2018)Separated representations at the heart of Proper Generalized Decomposition are constructed incrementally by minimizing the problem residual. However, the modes involved in the resulting decomposition do not exhibit a clear ...
-
Article dans une revue avec comité de lectureLEÓN, Angel; PEREZ, Marta; BARASINSKI, Anaïs; DEFOORT, Brigitte; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (MDPI, 2019)This paper concerns engineered composites integrating metallic particles to enhance thermal and electrical properties. However, these properties are strongly dependent on the forming process itself that determines the ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; HUERTA, Antonio; CUETO, Elías G.; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Wiley, 2019)It is well known that model order reduction techniques that project the solution of the problem at hand onto a low-dimensional subspace present difficulties when this solution lies on a nonlinear manifold. To overcome these ...
-
Article dans une revue avec comité de lectureIBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; CUETO, Elias; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; GONZALEZ, David; CUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Wiley, 2018)Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...