Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves
Article dans une revue avec comité de lecture
Abstract
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureRONDEPIERRE, Alexandre; ÜNALDI, Selen; ROUCHAUSSE, Yann; VIDEAU, Laurent; FABBRO, Rémy; CASAGRANDE, Olivier; SIMON-BOISSON, Christophe; BESAUCÉLE, Hervé; CASTELNAU, Olivier; BERTHE, Laurent (Elsevier, 2021)Processes using laser-shock applications, such as Laser Shock Peening or Laser Stripping require a deep understanding of both mechanical and thermal loading applied. We hereby present new experimental measurements of the ...
-
Article dans une revue avec comité de lectureHADDAD, Mattieu; EMILIANI, Esteban; ROUCHAUSSE, Yann; COSTE, Frédéric; BERTHE, Laurent; DOIZI, Steeve; BUTTICÈ, Salvatore; SOMANI, Bhaskar Kumar; TRAXER, Olivier P. (Springer Verlag, 2017)Purpose: Holmium:YAG laser is the most used laser for urolithiasis. Generally, we use metallic scissors to cut the fiber tip to restore its effectiveness. Many cleaving methods have been described to avoid fiber damage and ...
-
Article dans une revue avec comité de lectureLE BRAS, Corentin; RONDEPIERRE, Alexandre; SEDDIK, Raoudha; SCIUS-BERTRAND, Marine; ROUCHAUSSE, Yann; VIDEAU, Laurent; GERVAIS, Matthieu; MORIN, Leo; VALADON, Stéphane; ECAULT, Romain; FURFARI, Domenico; BERTHE, Laurent; FAYOLLE, Bruno (MDPI, 2019)This paper presents the first extensive study of the performances of solid polymers used as confinement materials for laser shock applications such as laser shock peening (LSP) as opposed to the exclusively used water-confined ...
-
Article dans une revue avec comité de lectureSCIUS-BERTRAND, Marine; VIDEAU, Laurent; RONDEPIERRE, Alexandre; LESCOUTE, Emilien; ROUCHAUSSE, Yann; KAUFMAN, Jan; ROSTOHAR, Danijela; BRAJER, Jan; BERTHE, Laurent (IOP Publishing, 2021)Optimization of the laser shock peening (LSP) and LASer Adhesion Test (LASAT) processes requires control of the laser-induced target's loading. Improvements to optical and laser technologies allow plasma characterization ...
-
Article dans une revue avec comité de lectureRONDEPIERRE, Alexandre; ROUCHAUSSE, Yann; VIDEAU, Laurent; CASAGRANDE, Olivier; CASTELNAU, Olivier; BERTHE, Laurent (AIP Publishing LLC, 2021-10)The authors present a new configuration for laser-induced plasmas in confined regimes for a 10 ns-range laser pulse in the green wavelength (532 nm) that repulses the breakdown threshold above 20 GW/cm2 compared to 8 GW/cm2 ...