PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment
Article dans une revue avec comité de lecture
Auteur
FRANZKOWIAK, Jean Eloi
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
119523 DAM Île-de-France [DAM/DIF]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
119523 DAM Île-de-France [DAM/DIF]
Date
2018Journal
Review of Scientific InstrumentsRésumé
A metallic tin plate with a given surface finish of wavelength ' 6 0 m and amplitude h ' 8 m is explosively driven by an electro-detonator with a shock-induced breakout pressure PSB = 28 GPa (unsupported). The resulting dynamic fragmentation process, the so-called “micro-jetting,” is the creation of high-speed jets of matter moving faster than the bulk metallic surface. Hydrodynamic instabilities result in the fragmentation of these jets into micron-sized metallic particles constituting a self-expanding cloud of droplets, whose areal mass, velocity, and particle size distributions are unknown. Lithium-niobate-piezoelectric sensor measured areal mass and Photonic Doppler Velocimetry (PDV) was used to get a time-velocity spectrogram of the cloud. In this article, we present both experimental mass and velocity results and we relate the integrated areal mass of the cloud to the PDV power spectral density with the assumption of a power law particle size distribution. Two models of PDV spectrograms are described. The first one accounts for the speckle statistics of the spectrum and the second one describes an average spectrum for which speckle fluctuations are removed. Finally, the second model is used for a maximum likelihood estimation of the cloud’s parameters from PDV data. The estimated integrated areal mass from PDV data is found to agree well with piezoelectric results. We highlight the relevance of analyzing PDV data and correlating different diagnostics to retrieve the physical properties of ejecta particles.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureFRANZKOWIAK, Jean Eloi; MERCIER, P; PRUDHOMME, G.; BERTHE, Laurent (Optical Society of America, 2018)A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ...
-
Dynamic fragmentation of graphite under laser-driven shocks: Identification of four damage regimes Article dans une revue avec comité de lectureSEISSON, Gabriel; PRUDHOMME, Gabriel; FRUGIER, Pierre Antoine; HÉBERT, David; LESCOUTE, Emilien; SOLLIER, Arnaud; VIDEAU, Laurent; MERCIER, Patrick; BOUSTIE, Michel; BERTHE, Laurent (Elsevier, 2016)This study presents the results of a large experimental campaign conducted on the Luli2000 laser facility. Thin targets of a commercial grade of porous graphite were submitted to high-power laser-driven shocks leading to ...
-
Article dans une revue avec comité de lectureESCAULT, Romain; BERTHE, Laurent; BOUSTIE, Michel; TOUCHARD, Fabienne; LESCOUTE, Emilien; SOLLIER, Arnaud; MERCIER, Patrick; BERNIER, Jacky (IOP Publishing, 2014)The propagation of laser-induced shock waves in a transparent epoxy sample is investigated by optical shadowgraphy. The shock waves are generated by a focused laser (3 ns pulse duration—1.2 to 3.4TWcm−2) producing pressure ...
-
Article dans une revue avec comité de lectureGAY, Elise; BERTHE, Laurent; BOUSTIE, Michel; ARRIGONI, Michel; MERCIER, Patrick; BÉNIER, Jacky (EDP Sciences, 2012)In a context of rising use of composite materials in aeronautic or defense fields, the understanding of the behavior under shock and induced damage of these complex materials is a key issue developed in this study. Shock ...
-
Article dans une revue avec comité de lectureBARDY, Simon; AUBERT, Bertrand; BERTHE, Laurent; COMBIS, Patrick; HEBERT, David; LESCOUTE, Emilien; RULLIER, Jean-Luc; VIDEAU, Laurent (SPIE, 2017)In order to control laser-induced shock processes, two main points of interest must be fully understood: the laser–matter interaction generating a pressure loading from a given laser intensity profile and the propagation ...