Model-form and predictive uncertainty quantification in linear aeroelasticity
Type
Articles dans des revues avec comité de lectureDate
2017Journal
Journal of Fluids and StructuresAbstract
In this work, Bayesian techniques are employed to quantify model-form and predictive uncertainty in the linear behavior of an elastically mounted airfoil undergoing pitching and plunging motions. The Bayesian model averaging approach is used to construct an adjusted stochastic model from different model classes for time-harmonic incompressible flows. From a set of deterministic function approximations, we construct different stochastic models, whose uncertain coefficients are calibrated using Bayesian inference with regard to the critical flutter velocity. Results show substantial reductions in the predictive uncertainties of the critical flutter speed compared to non-calibrated stochastic simulations. In particular, it is shown that an efficient adjusted model can be derived by considering a possible bias in the random error term on the posterior predictive distributions of the flutter index.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
BUGEAT, B.; CHASSAING, Jean-Camille; ROBINET, Jean-Christophe; SAGAUT, P. (ELSEVIER, 2019)3D optimal forcing and response of a 2D supersonic boundary layer are obtained by computing the largest singular value and the associated singular vectors of the global resolvent matrix. This approach allows to take into ...
-
RAMÍREZ, Luis; FOULQUIÉ, Charles; NOGUEIRA, Xesús; KHELLADI, Sofiane; CHASSAING, Jean-Camille; COLOMINAS, Ignasi (Elsevier, 2015)This paper presents a new sliding mesh technique for the computation of unsteady viscous flows in the presence of rotating bodies. The compressible Euler and incompressible Navier–Stokes equations are solved using a ...
-
NOGUEIRA, Xesús; RAMÍREZ, Luis; KHELLADI, Sofiane; CHASSAING, Jean-Camille; COLOMINAS, Ignasi (ELSEVIER, 2016)In this paper we present a high-order density-based finite-volume framework for all-speed flows. The formulation is based on high-order variable reconstructions performed using Moving Least Squares approximations. In ...
-
NOGUEIRA, Xesús; RAMÍREZ, Luis; FERNÁNDEZ-FIDALGO, Javier; DELIGANT, Michael; KHELLADI, Sofiane; CHASSAING, Jean-Camille; NAVARRINA, Fermín (ELSEVIER, 2020)In this work we present an a posteriori high-order finite volume scheme for the computation of compressible turbulent flows. An automatic dissipation adjustment (ADA) method is combined with the a posteriori paradigm, in ...
-
PONT, Grégoire; PONT, Grégoire; BRENNER, Pierre; BRENNER, Pierre; CINNELLA, Paola; CINNELLA, Paola; MAUGARS, Bruno; MAUGARS, Bruno; ROBINET, Jean-Christophe; ROBINET, Jean-Christophe (Elsevier BVElsevier BV, 2017)A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family ...