Model-form and predictive uncertainty quantification in linear aeroelasticity
Article dans une revue avec comité de lecture
Date
2017Journal
Journal of Fluids and StructuresAbstract
In this work, Bayesian techniques are employed to quantify model-form and predictive uncertainty in the linear behavior of an elastically mounted airfoil undergoing pitching and plunging motions. The Bayesian model averaging approach is used to construct an adjusted stochastic model from different model classes for time-harmonic incompressible flows. From a set of deterministic function approximations, we construct different stochastic models, whose uncertain coefficients are calibrated using Bayesian inference with regard to the critical flutter velocity. Results show substantial reductions in the predictive uncertainties of the critical flutter speed compared to non-calibrated stochastic simulations. In particular, it is shown that an efficient adjusted model can be derived by considering a possible bias in the random error term on the posterior predictive distributions of the flutter index.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecture3D optimal forcing and response of a 2D supersonic boundary layer are obtained by computing the largest singular value and the associated singular vectors of the global resolvent matrix. This approach allows to take into ...
-
Article dans une revue avec comité de lectureBUGEAT, Benjamin; CHASSAING, Jean-Camille; SAGAUT, Pierre; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2022-04)Resolvent analysis is used to study the low-frequency behaviour of the laminar oblique shock wave/boundary layer interaction (SWBLI). It is shown that the computed optimal gain, which can be seen as a transfer function of ...
-
Article dans une revue avec comité de lectureNOGUEIRA, Xesús; RAMÍREZ, Luis; CHASSAING, Jean-Camille; COLOMINAS, Ignasi; KHELLADI, Sofiane (Elsevier, 2016)In this paper we present a high-order density-based finite-volume framework for all-speed flows. The formulation is based on high-order variable reconstructions performed using Moving Least Squares approximations. In ...
-
Article dans une revue avec comité de lectureRAMÍREZ, Luis; FOULQUIÉ, Charles; NOGUEIRA, Xesús; CHASSAING, Jean-Camille; COLOMINAS, Ignasi; KHELLADI, Sofiane (Elsevier, 2015)This paper presents a new sliding mesh technique for the computation of unsteady viscous flows in the presence of rotating bodies. The compressible Euler and incompressible Navier–Stokes equations are solved using a ...
-
Article dans une revue avec comité de lectureNOGUEIRA, Xesús; RAMÍREZ, Luis; FERNÁNDEZ-FIDALGO, Javier; CHASSAING, Jean-Camille; NAVARRINA, Fermín; DELIGANT, Michael; KHELLADI, Sofiane (ELSEVIER, 2020)In this work we present an a posteriori high-order finite volume scheme for the computation of compressible turbulent flows. An automatic dissipation adjustment (ADA) method is combined with the a posteriori paradigm, in ...