• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A fully coupled thermo-viscoelastic-viscoplastic-damage framework to study the cyclic variability of the Taylor-Quinney coefficient for semi-crystalline polymers

Article dans une revue avec comité de lecture
Author
CHATZIGEORGIOU, George
KIEFER, Bjoern
303160 Technishe Universität Bergakademie Freiberg [TU Bergakademie Freiberg]
ccBENAARBIA, Adil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccMERAGHNI, Fodil

URI
http://hdl.handle.net/10985/16955
DOI
10.1016/j.ijmecsci.2019.105128
Date
2019
Journal
International Journal of Mechanical Sciences

Abstract

In the present work, a rigorous and consistent thermo-viscoelastic-viscoplastic ductile damage model is proposed to address the variability of the Taylor-Quinney coefficient (the storage to anelastic energy rate ratio) during the anelastic deformation of thermoplastic polymers. More specifically, the constitutive model developed is mainly dedicated to the description of recoverable viscoelastic effects occurring on different time scales, irreversible strains observed above the stress threshold and energy responses arising from the anelastic deformation process (storage of energy, dissipation of energy, thermomechanical coupling, etc.). One of the aims of this paper is to evaluate the partitioning between stored and heat energy without assuming any Taylor-Quinney values. The proposed approach is incorporated into the framework of Thermodynamics of Irreversible Processes and Generalized Standard Materials formalism to offer the thermodynamic consistency of all the constitutive equations. The numerical algorithm for the proposed model is implemented in the well-known finite element code Abaqus via the user material subroutine UMAT using an implicit formulation of the constitutive equations coupled with a radial return mapping algorithm. The model is then calibrated and validated across monotonic tensile and cyclic tensile-tensile tests by comparing predicted and experimentally observed energy responses. This comparison shows a good level of accordance between experimental findings and model predictions in terms of stress-strain responses for both monotonic and cyclic thermomechanical loading conditions. The model can also numerically capture the cyclic kinetics of the storage and dissipation energies. The capabilities of the fully-coupled model have been demonstrated through simulating the thermo-mechanical response of a complex 3D structure. The numerical analysis establishes the model’s capability to accurately render the spatio-temporal patterns of the Taylor-Quinney coefficient and the self-heating induced part of the ductile damage.

Files in this item

Name:
LEM3_IJMS_2019_BENAARBIA.pdf
Size:
9.724Mb
Format:
PDF
Embargoed until:
2020-05-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Non-linear FE2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: analysis and experimental validation 
    Article dans une revue avec comité de lecture
    TIKARROUCHINE, El-Hadi; ccBENAARBIA, Adil; CHATZIGEORGIOU, George; ccMERAGHNI, Fodil (Elsevier, 2020)
    This paper presents an experimental approach aimed at analyzing and validating a two-scale nonlinear Finite Element (FE 2 ) simulation of a 3D composite structure. The studied composite material consists of polyamide ...
  • Multiscale modeling accounting for inelastic mechanisms of fuzzy fiber composites with straight or wavy carbon nanotubes 
    Article dans une revue avec comité de lecture
    CHATZIGEORGIOU, George; ccMERAGHNI, Fodil; CHARALAMBAKIS, Nicolas; ccBENAARBIA, Adil (Elsevier, 2020)
    This paper proposes a micromechanical approach aimed at identifying the response of unidirectional fuzzy fiber composites undergoing inelastic fields. Fuzzy fibers are reinforcement fibers coated with radially aligned ...
  • Piezoelectric-piezomagnetic behaviour of coated long fiber composites accounting for eigenfields 
    Article dans une revue avec comité de lecture
    CHATZIGEORGIOU, George; ccBENAARBIA, Adil; KIEFER, B.; ccMERAGHNI, Fodil (Elsevier, 2019)
    A unified micromechanical approach is proposed to evaluate the electro-magneto-mechanical response of coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic behaviour. The developed framework ...
  • A gradient enhanced constitutive framework for the investigation of ductile damage localization within semicrystalline polymers 
    Article dans une revue avec comité de lecture
    SATOURI, Soheil; CHATZIGEORGIOU, George; ccBENAARBIA, Adil; ccMERAGHNI, Fodil (SAGE, 2022)
    The paper presents a gradient enhanced model dealing with nonlocal phenomena driven by the ductile damage in semicrystalline polymers that exhibit rate-dependent and rate-independent mechanisms. The study aims at capturing ...
  • Effect of thermo-hygro glycol aging on the damage mechanisms of short glass-fiber reinforced polyamide 66 
    Article dans une revue avec comité de lecture
    CHEKKOUR, Rabii; ccBENAARBIA, Adil; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ROBERT, Gilles (Elsevier BV, 2022-12)
    This paper aims at studying the effect of ethylene glycol aging on the overall behavior and the damage mechanisms of the Polyamide 66 (PA66) and the short glass fiber reinforced polyamide 66 (PA66/GF). To this end, a proper ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales