Behavior of basalt under laser-induced shock-wave application to the planetary hypervelocity impact effect
Article dans une revue avec comité de lecture
Date
2011Journal
Journal of Laser ApplicationsAbstract
This paper presents the results of an investigation of the impact of laser-induced shock on basalt samples in a water confinement regime. In order to observe the effect of laser shock-wave propagation, in this material, the rear free surface velocity is measured by a velocimetry interferometer system for any reflector under various specified conditions. Parameters for an elastoplastic constitutive law and the Kanel's damage model are provided and have been set up in such a way to ensure good correlation between numerical simulations and laboratory experiments. These resultant material properties, identified for the basalt sample studied here, could be used in future investigations looking to further correlating residual effects in material with pressure levels induced by water confined laser-matter interaction. This is of particular importance in meteoritics and planetary science due to the fact that hypervelocity impacts represent a major event taking place in the solar system, and shock waves generated during hypervelocity impacts can significantly affect physical properties of extraterrestrial materials and solid solar system bodies such as Mars, the Moon, asteroids, and others.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureGATTACCECA, Jérôme; BOUSTIE, Michel; HOOD, Lon L.; CUQ-LELANDAIS, Jean Paul; FÜLLER, Michael D.; BEZAEVA, Natalia S.; DE RESSÉGUIER, Thibaut; BERTHE, Laurent (Elsevier, 2010)Since the first evidence of magnetized lunar crust, two mechanisms of magnetization have been suggested to account for lunar magnetism: thermoremanent magnetization (TRM), or shock remanent magnetization (SRM). We present ...
-
Article dans une revue avec comité de lectureMALINOWSKI, Paweł H.; SORRENTINO, Luigi; VASCONCELLOS, Davi Silva De; BERTHE, Laurent; GONZALEZ, Pedro Pascual; CHOCINSKI-ARNAULT, Laurence; BOUSTIE, Michel; TOUCHARD, Fabienne; OSTACHOWICZ, Wiesław M. (Elsevier, 2018)Polymer composite materials provide good strength to weight ratio and tailored mechanical properties thanks to the reinforcing fibres. Until recently, the need for taking into account the whole life cycle of a composite ...
-
Dynamic fragmentation of graphite under laser-driven shocks: Identification of four damage regimes Article dans une revue avec comité de lectureSEISSON, Gabriel; PRUDHOMME, Gabriel; FRUGIER, Pierre Antoine; HÉBERT, David; LESCOUTE, Emilien; SOLLIER, Arnaud; VIDEAU, Laurent; MERCIER, Patrick; BOUSTIE, Michel; BERTHE, Laurent (Elsevier, 2016)This study presents the results of a large experimental campaign conducted on the Luli2000 laser facility. Thin targets of a commercial grade of porous graphite were submitted to high-power laser-driven shocks leading to ...
-
Article dans une revue avec comité de lectureBERTHE, Laurent; ARRIGONI, Michel; BOUSTIE, Michel; CUQ-LELANDAIS, Jean Paul; BROUSSILLOU, Cédric; FABRE, Grégory; JEANDIN, Michel; GUIPONT, Vincent; NIVARD, Mariette (Taylor & Francis, 2011)This paper proposes a state-of-the-art laser adhesion test. It consists of testing material interfaces with laser-driven shock wave. Since the first demonstration in the 1980s by Vossen, many studies and developments have ...
-
Article dans une revue avec comité de lectureGAY, Elise; BERTHE, Laurent; BOUSTIE, Michel; ARRIGONI, Michel; MARION, Trombini (Elsevier, 2014)Laser-induced shock yields to a local tensile stress within a sample. This high strain rate stress can be used to verify the bond strength between two layers. This method has been applied to Carbon Fibre Reinforced Polymer ...