Analysis and Comparison of Transonic Buffet Phenomenon over Several Three-Dimensional Wings
Article dans une revue avec comité de lecture
Résumé
The transonic buffet is a complex aerodynamic instability that appears on wings and airfoils at a high subsonic Mach number and/or angle of attack. It consists of a shock oscillation that induces pressure and notably lift fluctuations, thus limiting the flight envelope of civil aircraft. The aim of the present Paper is to improve the understanding of the flow physics of the three-dimensional transonic buffet over swept wings through the analysis and comparison of four different experimental databases. In particular, the objective is to identify characteristic values of the phenomenon such as Strouhal numbers, convection velocities, buffet onset, etc. It is shown that some dimensionless numbers are kept constant among the different databases and consequently can be considered as characteristics, whereas others change. The key factors in the understanding of the three-dimensional transonic buffet phenomenon lie in explaining common features but also the variability of transonic buffet characteristics in different configurations. In particular, it is shown that three-dimensional buffet is characterized by a Strouhal number in the range 0.2–0.3 and a spanwise convection velocity of 0.245 0.015 U∞, where U∞ denotes the freestream velocity. These characteristic ranges of frequencies are larger than those of the two-dimensional buffet phenomenon, which suggests different physical mechanisms.
Fichier(s) constituant cette publication
- Nom:
- DYNFLUID_AIAAJ_2019_ROBINET.pdf
- Taille:
- 9.556Mo
- Format:
- Description:
- Article
- Fin d'embargo:
- 2020-03-08
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lecturePALADINI, Edoardo; MARQUET, Olivier; SIPP, Denis; DANDOIS, Julien; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2019)The transonic flow field around a supercritical airfoil is investigated. The objective of the present paper is to enhance the understanding of the physical mechanics behind two-dimensional transonic buffet. The paper is ...
-
Article dans une revue avec comité de lecturePALADINI, Edoardo; BENEDDINE, Samir; DANDOIS, Julien; SIPP, Denis; ROBINET, Jean-Christophe (American Physical Society, 2019)The objective of the present study is to explain the evolution of the transonic buffet phenomenon from two-dimensional airfoils to three-dimensional swept wings by a global stability analysis. With respect to two-dimensional ...
-
Article dans une revue avec comité de lectureBÖLLE, Tobias; BRION, Vincent; SIPP, Denis; JACQUIN, Laurent; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2020)The present work investigates the excitation process by which free-stream disturbances are transformed into vortex-core perturbations. This problem of receptivity is modelled in terms of the resolvent in frequency space ...
-
Article dans une revue avec comité de lectureTARSIA MORISCO, Cosimo; ROBINET, Jean-Christophe; HERPE, Julien; SAUCEREAU, Didier (AIP Publishing, 2023-11)When rocket engine nozzles operate at a high degree of over-expansion, an internal flow separation occurs with a strong unsteady shock–wave boundary layer interaction. The global dynamics results in a low-frequency mode, ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Elsevier, 2015)The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...