Damage localization in geometrically complex aeronautic structures using canonical polyadic decomposition of Lamb wave difference signal tensors
Type
Articles dans des revues avec comité de lectureDate
2019Journal
Structural Health MonitoringAbstract
Monitoring in real time and autonomously the health state of aeronautic structures is referred to as structural health monitoring and is a process decomposed in four steps: damage detection, localization, classification, and quantification. In this work, the structures under study are aeronautic geometrically complex structures equipped with a bonded piezoelectric network. When interrogating such a structure, the resulting data lie along three dimensions (namely, the “actuator,”“sensor,” and “time” dimensions) and can thus be interpreted as three-way tensors. The fact that Lamb wave structural health monitoring–based data are naturally three-way tensors is here investigated for damage localization purpose. In this article, it is demonstrated that under classical assumptions regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensors build from the phase and amplitude of the difference signals between a healthy and damaged states provides direct access to the distances between the piezoelectric elements and damage. This property is used here to propose an original tensor-based damage localization algorithm. This algorithm is successfully validated on experimental data coming from a scale one part of an airplane nacelle (1.5 m in height for a semi circumference of 4 m) equipped with 30 piezoelectric elements and many stiffeners. Obtained results demonstrate that the tensor-based localization algorithm can locate a damage within this structure with an average precision of 10 cm and with a precision lower than 1 cm at best. In comparison with standard damage localization algorithms (delay-and-sum, reconstruction algorithm for probabilistic inspection of defects, and ellipse- or hyperbola-based algorithms), the proposed algorithm appears as more precise and robust on the investigated cases. Furthermore, it is important to notice that this algorithm only takes the raw signals as inputs and that no specific pre-processing steps or finely tuned external parameters are needed. This algorithm is thus very appealing as reliable and easy to settle damage localization timeliness with low false alarm rates are one of the key successes to shorten the gap between research and industrial deployment of structural health monitoring processes.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; REBILLAT, Marc; MECHBAL, Nazih (NTD, 2019)In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
-
BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid; REBILLAT, Marc (2017)The ability to monitor the health of complex structures such as aeronautic or civil engineering structures in real time is becoming increasingly important. This process is referred to as structural health monitoring (SHM) ...
-
BAKIR, Myriam; REBILLAT, Marc; MECHBAL, Nazih (IFAC, 2015)Structural damages result in nonlinear dynamical signatures that significantly help for their monitoring. A damage type classification approach is proposed here that is based on a parallel Hammerstein models ...
-
FENDZI, Claude; REBILLAT, Marc; MECHBAL, Nazih; GUSKOV, Mikhail; COFFIGNAL, Gérard (SAGE Journals, 2016)This paper presents a temperature compensation method for Lamb wave structural health monitoring. The proposed approach considers a representation of the piezo-sensor signal through its Hilbert transform that allows one ...
-
GHRIB, Meriem; BERTHE, Laurent; MECHBAL, Nazih; REBILLAT, Marc; GUSKOV, Mikhail; ECAULT, Romain; BEDREDDINE, Nas (Elsevier, 2017)Structural Health Monitoring (SHM) is defined as the process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructures. SHM can be organized into five main steps: ...