Homogenization using modified Mori-Tanaka and TFA framework for elastoplastic-viscoelastic-viscoplastic composites: Theory and numerical validation
Article dans une revue avec comité de lecture
Date
2019Journal
International Journal of PlasticityAbstract
This study proposes a micromechanical model based on a modified multi-scale mean field approach that predicts the overall behavior of long fiber reinforced elastoplastic and viscoelastic-viscoplastic composites. The homogenization method adopted is the Mori-Tanaka scheme combined with the Transformation Field Analysis. Moreover, motivated by the distribution of local fields observed in finite element based homogenization analyses, the proposed approach is extended and introduces a special type of coating between the fibers and the matrix. This extension permits to deal with the overestimation of the global stress-strain response using the classical Mori-Tanaka method. Specifically, the coating has the same initial behavior as the matrix, but the inelastic strain fields are amplified compared to those in the matrix during loading. The constitutive equations governing the proposed approach are provided and the numerical implementation, utilizing the ”return mapping algorithm” scheme, is explained in detail. The effectiveness of this new method is demonstrated through extensive numerical validation tests, including non-monotonic and non-proportional loading at different strain rates. The reference solution consists of the full field computation using finite element simulations on the studied Representative Volume Element (RVE).
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteCette étude est basée sur une approche multi-échelles à champs moyens modifiée. Elle propose un modèle micromécanique permettant de prédire le comportement global des composites élastoplastiques et viscoélastiques-viscoplastiques ...
-
Conférence invitéeIn this work, a new 3D thermomechanically coupled phenomenological model is proposed for SMAs. SMA behavior is described through several strain mechanisms, each associated with its proper internal variables. Forward and ...
-
Article dans une revue avec comité de lectureACHOUR, Nadia; CHATZIGEORGIOU, George; CHEMISKY, Yves; FITOUSSI, Joseph; MERAGHNI, Fodil (Elsevier, 2015)In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit ...
-
Article dans une revue avec comité de lectureIn this work, a phenomenological model for thermoplastic polymers involving several mechanisms is proposed. The constitutive equations lie within the framework of thermodynamics and account for both viscoelasticty, ...
-
Article dans une revue avec comité de lectureCHATZIATHANASIOU, Dimitris; CHEMISKY, Yves; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Elsevier, 2016)In the present study, a new 3D thermodynamic coupled model is proposed for SMAs. The behavior of SMA structures is described through several strain mechanisms, each associated with its proper internal variables. This model ...