Prediction of necking in HCP sheet metals using a two-surface plasticity model
Type
Articles dans des revues avec comité de lectureAuthor

178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
522362 Laboratoire de recherche de Mécanique, Modélisation et Production [LA2MP]

178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS

243747 Labex DAMAS
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
Date
2019Journal
International Journal of PlasticityAbstract
In the present contribution, a two-surface plasticity model is coupled with several diffuse and localized necking criteria to predict the ductility limits of hexagonal closed packed sheet metals. The plastic strain is considered, in this two-surface constitutive framework, as the result of both slip and twinning deformation modes. This leads to a description of the plastic anisotropy by two separate yield functions: the Barlat yield function to model plastic anisotropy due to slip deformation modes, and the Cazacu yield function to model plastic anisotropy due to twinning deformation modes. Actually, the proposed two-surface model offers an accurate prediction of the plastic anisotropy as well as the tension–compression yield asymmetry for the material response. Furthermore, the current model allows incorporating the effect of distortional hardening resulting from the evolution of plastic anisotropy and tension–compression yield asymmetry. Diffuse necking is predicted by the general bifurcation criterion. As to localized necking, it is determined by the Rice bifurcation criterion as well as by the Marciniak & Kuczynski imperfection approach. To apply both bifurcation criteria, the expression of the continuum tangent modulus associated with this constitutive framework is analytically derived. The set of equations resulting from the coupling between the Marciniak & Kuczynski approach and the constitutive relations is solved by developing an efficient implicit algorithm. The numerical implementation of the two-surface model is assessed and validated through a comparative study between our numerical predictions and several experimental results from the literature. A sensitivity study is presented to analyze the effect of some mechanical parameters on the prediction of diffuse and localized necking in thin sheet metals made of HCP materials. The effect of distortional hardening on the onset of plastic instability is also investigated.
Files in this item
- Name:
- LEM3_IJP_2019_BENBETTAIEB
- Size:
- 2.173Mb
- Format:
- Description:
- Main article
- Embargoed until:
- 2020-06-01
Related items
Showing items related by title, author, creator and subject.
-
JEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ABED-MERAIM, Farid; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer International Publishing, 2019)In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
-
JEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ABED-MERAIM, Farid; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer, 2018)In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
-
JEDIDI, Mohamed Yassine; BEN BETTAIEB, Mohamed; KHABOU, Mohamed Taoufik; ABED-MERAIM, Farid; HADDAR, Mohamed (Springer, 2018)Due to their lightness, low stiffness and high strength, Hexagonal Closed Packed (HCP) materials are widely used in aeronautic and aerospace industries. In this paper, the ductility limit of HCP sheet materials at room ...
-
AKPAMA, Holanyo K.; BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid (Wiley, 2016)In an incremental formulation suitable to numerical implementation, the use of rate-independent theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the set of potentially ...
-
BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid; LEMOINE, Xavier (Springer, 2017)A number of parts and components involved in the automotive industry are made of thin bent sheets, which are subjected to out-of-plane compressive stresses in addition to traditional in-plane stresses. Unfortunately, the ...