• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Complex Algorithms for Data-Driven Model Learning in Science and Engineering

Article dans une revue avec comité de lecture
Author
MONTÁNS, Francisco Javier
302798 Universidad Politécnica de Madrid [UPM]
GÓMEZ-BOMBARELLI, Rafael
301950 Massachusetts Institute of Technology [MIT]
KUTZ, Jose Nathan
300433 University of Washington [Seattle]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18463
DOI
10.1155/2019/5040637
Date
2019
Journal
Complexity

Abstract

In their first centuries, scientific and engineering develop-ments were dominated by empirical understanding which encapsulated the first paradigm of scientific discovery. After the Renaissance, the scientific revolution and the develop-ment of calculus led to a new scientific viewpoint wherebyphysical principles, laws of nature, and engineering models were established by proposing new theoretical constructs thatcould be verified through specific experiments. This was thesecond paradigm of scientific discovery. More recently, thecomputational era, or the third paradigm of discovery, has allowed us to solve complex and nonlinear scientific and engi-neering problems that were beyond our analytically tractable methodologies. Today, there is a new fourth paradigm ofdiscovery, which is a data-driven science and engineering framework whereby complex models and physical laws are directly inferred from data.

Files in this item

Name:
PIMM_C_2019_CHINESTA.pdf
Size:
405.6Kb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Data-driven modeling and learning in science and engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; ccCHINESTA SORIA, Francisco; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan (Elsevier Masson, 2019)
    In the past, data in which science and engineering is based, was scarce and frequently obtained by experiments proposed to verify a given hypothesis. Each experiment was able to yield only very limited data. Today, data ...
  • Complex Algorithms for Data-Driven Model Learning in Science and Engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan; ccCHINESTA SORIA, Francisco (Hindawi Limited, 2019)
    no abstract
  • An Agent-Based Model to Reproduce the Boolean Logic Behaviour of Neuronal Self-Organised Communities through Pulse Delay Modulation and Generation of Logic Gates 
    Article dans une revue avec comité de lecture
    IRASTORZA-VALERA, Luis; ccBENITEZ, Jose; MONTÁNS, Francisco Javier; SAUCEDO-MORA, Luis (MDPI AG, 2024-02)
    The human brain is arguably the most complex “machine” to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, ...
  • Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale 
    Article dans une revue avec comité de lecture
    AMORES, Víctor J.; MONTÁNS, Francisco J.; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Frontiers Media SA, 2022-05)
    We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
  • Shape parametrization of bio-mechanical finite element models based on medical images 
    Article dans une revue avec comité de lecture
    LAUZERAL, Nathan; BORZACCHIELLO, Domenico; KUGLER, Michaël; GEORGE, Daniel; RÉMOND, Yves; HOSTETTLER, Alexandre; ccCHINESTA SORIA, Francisco (Taylor & Francis, 2019)
    The main objective of this study is to combine the statistical shape analysis with a morphing procedure in order to generate shape-parametric finite element models of tissues and organs and to explore the reliability and ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales