Calculs Éléments Finis à l’échelle des grains depuis des données EBSD
Communication avec acte
Abstract
For the sake of understanding the behaviour of a polycrystal at its grain scale, Finite Element (FE) numerical simulations can be performed, taking into account the physical properties of each grain. Those simulations must take into account the phase heterogeneities, the local anisotropies and the crystalline orientations as well. In addition, the actual grain morphologies must be well described in order to model localization phenomena. An algorithm, named MTEX2Gmsh, is proposed to automatically generate an EF mesh from EBSD data. The resulting mesh gives smooth and accurate descriptions of the grain boundaries together with reduced Degrees of Freedom (DoF), hence limited computational times. Using this algorithm, the fragile-elastic behaviour of a ceramic and micro-plasticity phenomena in a nitrided steel are studied as application cases. The latter is based on a crystal-plasticity model for the ferrite phase.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThis paper investigates the relevance of the representation of polycrystalline aggregates using Radical Vorono (RV) tessellation, computed from Random Close Packs (RCP) of spheres with radius distribution following a ...
-
Article dans une revue avec comité de lectureDEPRIESTER, Dorian; KUBLER, Régis (Elsevier, 2019)This paper investigates the relevance of the representation of polycrystalline aggregates using RadicalVoronoï(RV)tessellation,computedfromRandomClosePacks(RCP)ofsphereswithradiusdistributionfollowing a lognormal distribution. ...
-
Article dans une revue avec comité de lectureIn material sciences applied to crystalline materials, such as metals or ceramics, the grain morphology (size and shape) and the crystallographic texture are of great importance for understanding the macroscopic behaviour ...
-
Article dans une revue avec comité de lectureThe estimation of the grain size in granular materials is usually performed by 2Dobservations. Unfolding the grain size distribution from apparent 2D sizes is commonly referred as the corpuscle problem. For spherical ...
-
Article dans une revue avec comité de lectureIn materials science, the microstructures of materials are generally characterized by 2D observation (e.g. electron microscopy). For polycrystalline materials, such as crystalline rocks or ceramics, those observations can ...