Optimal transient growth in compressible turbulent boundary layers
Article dans une revue avec comité de lecture
Date
2015Journal
Journal of Fluid MechanicsAbstract
The structure of zero-pressure-gradient compressible turbulent boundary layers is analysed using the tools of optimal transient growth theory. The approach relies on the extension to compressible flows of the theoretical framework originally developed by Reynolds & Hussain (J. Fluid Mech., vol. 52, 1972, pp. 263–288) for incompressible flows. The model is based on a density-weighted triple decomposition of the instantaneous field into the contributions of the mean flow, the organized (coherent) motions and the disorganized background turbulent fluctuations. The mean field and the eddy viscosity characterizing the incoherent fluctuations are here obtained from a direct numerical simulation database. Most temporally amplified modes (optimal modes) are found to be consistent with scaling laws of turbulent boundary layers for both inner and outer layers, as well as in the logarithmic region, where they exhibit a self-similar spreading. Four free-stream Mach numbers are considered: $\mathit{Ma}_{\infty }=0.2$, 2, 3 and 4. Weak effects of compressibility on the characteristics length and the orientation angles are observed for both the inner- and the outer-layer modes. Furthermore, taking into account the effects of mean density variations, a universal behaviour is suggested for the optimal modes that populate the log layer, regardless of the Mach number. The relevance of the optimal modes in describing the near-wall layer dynamics and the eddies that populate the outer region is discussed.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecturePIROZZOLI, Sergio; BERNARDINI, Matteo; MARIÉ, Simon; GRASSO, Francesco (Cambridge University Press (CUP), 2015)Direct numerical simulation of the spatially developing mixing layer issuing from two turbulent streams past a splitter plate is carried out under mild compressibility conditions. The study mainly focuses on the early ...
-
Communication avec acteSCIACOVELLI, Luca; GLOERFELT, Xavier; CINNELLA, Paola; GRASSO, Francesco (Springer International Publishing, 2020-05)Hypersonic turbulent boundary layers (HTBL) at Mach number M =6 of a dense gas (PP11) and a perfect gas (air) are investigated by means of Direct Numerical Simulations (DNS), from the laminar to fully turbulent state. The ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; GRASSO, Francesco; ROBINET, Jean-Christophe; SCIACOVELLI, Luca; GLOERFELT, Xavier (Cambridge University Press (CUP), 2020)A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
-
Article dans une revue avec comité de lectureBEN HASSAN SAIDI, Ismaïl; SCHMELZER, Martin; CINNELLA, Paola; GRASSO, Francesco (Elsevier Inc., 2022-02)Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities ...
-
Article dans une revue avec comité de lectureThe present paper investigates the influence of dense gases governed by complex equations of state on the dynamics of homogeneous isotropic turbulence. In particular, we investigate how differences due to the complex ...