Laser Shock Processing on Metal
Article dans une revue avec comité de lecture
Abstract
Since its invention in the late 1960s, and the pioneering work on metal strengthening in USA during the late 1970s, laser shock processing (LSP) has become a reliable surface treatment for improving the mechanical or corrosion resistance of metallic materials. Moreover, laser-induced shock waves can also be envisaged for the investigation of dense matter’s behavior—including phase transformations—under ultra-high strain rate loading (up to 107 s−1) using dedicated diagnostics (VISAR, etc.). This Special Issue on LSP aims at providing a rather exhaustive and up-to-date state of the art on LSP based upon the most recent research works. The following fields are covered in the seven selected papers: materials’ behavior and phase transformations under high strain rate (Amadou et al. [1]), new loading conditions with ultra-short pulses (Petronic et al. [2]) surface modifications induced by laser peening including recrystallization effects (Zhou et al. [3]) and warm laser peening (Huang et al. [4], Chen et al. [5]), and novel applications of LSP such as water droplet erosion resistance (Gujba et al. [6]) or impact spot welding (Liu et al. [7]). The wide variety of topics related to LSP highlights the extraordinary dynamism and enthusiasm of the growing international LSP community.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecture
PEYRE, Patrice; BERTHE, Laurent; VIGNAL, Vincent; POPA, Ioana; BAUDIN, Thierry (IOP Publishing, 2012)
Laser shock processing (LSP) is now a recognized surface treatment for improving fatigue or corrosion behaviour of metallic materials through the generation of a compressive stress field. In turn, the analysis of shock ... -
Article dans une revue avec comité de lectureCASALINO, Giuseppe; MORTELLO, Michelangelo; PEYRE, Patrice (Elsevier, 2015)In this work, a 5754 Al alloy and T40 were joined in butt configuration by focusing a fiber laser onto the titanium side, close to the weld centerline (offset). The keyhole was made entirely of titanium, and the fusion of ...
-
Article dans une revue avec comité de lectureKROMER, Robin; COSTIL, Sophie; CORMIER, Jonathan; COURAPIED, Damien; BERTHE, Laurent; PEYRE, Patrice; BOUSTIE, Michel (Elsevier, 2015)In thermal spraying, adhesive bond strength is a feature of surface properties. An adapted surface is studied with prior-surface treatments to enhance interface energy. This study deals with Ni–Al coatings on 2017 aluminum ...
-
Article dans une revue avec comité de lectureTOMASHCHUK, Iryna; SALLAMAND, Pierre; CICALA, E; PEYRE, Patrice; GREVEY, D (Elsevier, 2014)The tensile strength of direct AA5754/Ti6Al4V joints performed by high speed Yb:YAG laser welding is found to be determined by morphology and phase content of dissimilar interface formed between contacting Al-rich and ...
-
Article dans une revue avec comité de lecturePEYRE, Patrice; BERTHE, Laurent; POUZET, Sébastien; SALLAMAND, Pierre; TOMASHCHUK, Iryna;
DAL, Morgan (Elsevier, 2014)
Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser ...