Prediction of Forming Limit Diagrams under combined Bending-Stretching loadings
Communication avec acte
Abstract
A number of parts and components involved in the automotive industry are made of thin bent sheets. Unfortunately, the classical predictions based on traditional Forming Limit Diagrams are not relevant when the strain distribution is heterogonous over the thickness, as is the case for bent sheet metals. The aim of the present contribution is to propose an extension of the well-known Marciniak‒Kuczynski approach to account for the effect of bending on formability prediction. The new developed tool allows predicting the limit strains for the whole range of strain paths. The mechanical behavior of the studied sheets follows the rigid–plastic flow theory. Through numerical results, it is shown that bending tends to decrease the formability limit of the sheet metal.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureA number of parts and components involved in the automotive industry are made of thin bent sheets, which are subjected to out-of-plane compressive stresses in addition to traditional in-plane stresses. Unfortunately, the ...
-
Article dans une revue avec comité de lectureFRANZ, Gérald; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel; ABED-MERAIM, Farid (Elsevier, 2011)In this paper, the effects of microstructure and deformation mechanisms on the ductility of multiphase steels are investigated. To this end, a formability criterion based on loss of ellipticity of the boundary value problem ...
-
Communication avec acteFRANZ, Gérald; BEN ZINEB, Tarak; LEMOINE, Xavier; BERVEILLER, Marcel; ABED-MERAIM, Farid (Curran Associates, Inc. / ICF, 2009)In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion based on bifurcation theory first proposed by Rice is applied to elastic-plastic tangent moduli ...
-
Communication avec acteLa striction et la rupture au cours de l’opération d’emboutissage figurent parmi les principaux phénomènes limitant les déformations maximales admises par les métaux. Ces phénomènes sont liés à la microstructure des matériaux ...
-
Communication sans acteThe development of a relevant constitutive model adapted to sheet metal forming simulations requires an accurate description of the most important sources of anisotropy, i.e. the slip processes, the intragranular substructure ...