• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear Regression Operating on Microstructures Described from Topological Data Analysis for the Real-Time Prediction of Effective Properties

Article dans une revue avec comité de lecture
Auteur
YUN, Minyoung
ARGERICH, Clara
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
DUVAL, Jean Louis
564849 ESI Group [ESI Group]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18955
DOI
10.3390/ma13102335
Date
2020
Journal
Materials

Résumé

Real-time decision making needs evaluating quantities of interest (QoI) in almost real time. When these QoI are related to models based on physics, the use of Model Order Reduction techniques allows speeding-up calculations, enabling fast and accurate evaluations. To accommodate real-time constraints, a valuable route consists of computing parametric solutions—the so-called computational vademecums—that constructed off-line, can be inspected on-line. However, when dealing with shapes and topologies (complex or rich microstructures) their parametric description constitutes a major difficulty. In this paper, we propose using Topological Data Analysis for describing those rich topologies and morphologies in a concise way, and then using the associated topological descriptions for generating accurate supervised classification and nonlinear regression, enabling an almost real-time evaluation of QoI and the associated decision making.

Fichier(s) constituant cette publication

Nom:
PIMM_M_2020_YUN.pdf
Taille:
1.267Mo
Format:
PDF
Description:
Article
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • From linear to nonlinear PGD-based parametric structural dynamics 
    Article dans une revue avec comité de lecture
    QUARANTA, Giacomo; ARGERICH MARTIN, Clara; IBÁÑEZ, Rubén; DUVAL, Jean Louis; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present paper analyzes different integration schemes of solid dynamics in the frequency domain involving the so-called Proper Generalized Decomposition – PGD. The last framework assumes for the solution a parametric ...
  • Empowering Advanced Driver-Assistance Systems from Topological Data Analysis 
    Article dans une revue avec comité de lecture
    FRAHI, Tarek; ccCHINESTA SORIA, Francisco; FALCO, Antonio; BADIAS, Alberto; ccCUETO, Elias; CHOI, Hyung Yun; HAN, Manyong; DUVAL, Jean-Louis (MDPI, 2021)
    We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive ...
  • A novel sensitivity analysis on friction spot joining process performed on aluminum\polycarbonate sheets by simulation 
    Article dans une revue avec comité de lecture
    SERRATORE, Giuseppe; GAGLIARDI, Francesco; MARTÍN, Clara Argerich; PINILO, Ruben Ibanez; ccCUETO, Elias; FILICE, Luigino; ccCHINESTA SORIA, Francisco (Springer Verlag, 2020)
    The manufacturing research has been focusing on the improvement of product performance and lightweight design. The synergic effects between material properties and manufacturing solutions have been considered, extensively. ...
  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
  • Hybrid constitutive modeling: data-driven learning of corrections to plasticity models 
    Article dans une revue avec comité de lecture
    IBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales