SPATIAL ATTENUATION PREDICTION OF LAMB WAVES IN COMPOSITE MATERIALS
Type
Communications avec actesDate
2019Abstract
The inspection and detection of damage in composite materials using Lamb waves are particularly effective because Lamb wave can propagate over relatively large distance and hence can cover a large area with few testing time and equipment. However, comparing to the dispersion features that have been investigated systematically in the literature, predicting simply and reliably the spatial attenuation, which is the decrease of the amplitude of the propagating wave with distance, is still a challenge especially for structures large enough to industrial scale. In this paper, a simple model able to predict Lamb wave attenuation for different frequencies, which takes three damping models, Hysteretic, Kelvin-Voigt and Biot models into account, is derived directly from dispersion equations. Experiments on a practical aeronautical component, a Fan Cowl Structure, are carried out to validate the developed model. The merits of the proposed method lie in the fact that it is derived directly from dispersion equations instead of relying on complex finite element models and are thus simple to compute. Despite its simplicity, it is still effective when predicting attenuation coefficient for geometrically complex structures such as the Fan Cowl Structure.
Files in this item
- Name:
- PIMM_SAMRT_2019_REBILLAT4.pdf
- Size:
- 846.5Kb
- Format:
- Description:
- Communication avec actes
Related items
Showing items related by title, author, creator and subject.
-
JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; REBILLAT, Marc; MECHBAL, Nazih (NTD, 2019)In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
-
BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid; REBILLAT, Marc (2017)The ability to monitor the health of complex structures such as aeronautic or civil engineering structures in real time is becoming increasingly important. This process is referred to as structural health monitoring (SHM) ...
-
BAKIR, Myriam; REBILLAT, Marc; MECHBAL, Nazih (IFAC, 2015)Structural damages result in nonlinear dynamical signatures that significantly help for their monitoring. A damage type classification approach is proposed here that is based on a parallel Hammerstein models ...
-
FENDZI, Claude; REBILLAT, Marc; MECHBAL, Nazih; GUSKOV, Mikhail; COFFIGNAL, Gérard (SAGE Journals, 2016)This paper presents a temperature compensation method for Lamb wave structural health monitoring. The proposed approach considers a representation of the piezo-sensor signal through its Hilbert transform that allows one ...
-
GHRIB, Meriem; BERTHE, Laurent; MECHBAL, Nazih; REBILLAT, Marc; GUSKOV, Mikhail; ECAULT, Romain; BEDREDDINE, Nas (Elsevier, 2017)Structural Health Monitoring (SHM) is defined as the process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructures. SHM can be organized into five main steps: ...