• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SPATIAL ATTENUATION PREDICTION OF LAMB WAVES IN COMPOSITE MATERIALS

Type
Communications avec actes
Author
GUO, Shuanglin
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
REBILLAT, Marc
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
MECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/19538
Date
2019

Abstract

The inspection and detection of damage in composite materials using Lamb waves are particularly effective because Lamb wave can propagate over relatively large distance and hence can cover a large area with few testing time and equipment. However, comparing to the dispersion features that have been investigated systematically in the literature, predicting simply and reliably the spatial attenuation, which is the decrease of the amplitude of the propagating wave with distance, is still a challenge especially for structures large enough to industrial scale. In this paper, a simple model able to predict Lamb wave attenuation for different frequencies, which takes three damping models, Hysteretic, Kelvin-Voigt and Biot models into account, is derived directly from dispersion equations. Experiments on a practical aeronautical component, a Fan Cowl Structure, are carried out to validate the developed model. The merits of the proposed method lie in the fact that it is derived directly from dispersion equations instead of relying on complex finite element models and are thus simple to compute. Despite its simplicity, it is still effective when predicting attenuation coefficient for geometrically complex structures such as the Fan Cowl Structure.

Files in this item

Name:
PIMM_SAMRT_2019_REBILLAT4.pdf
Size:
846.5Kb
Format:
PDF
Description:
Communication avec actes
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; REBILLAT, Marc; MECHBAL, Nazih (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • On-board Decision Making Platform for Structural Health Monitoring 
    BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid; REBILLAT, Marc (2017)
    The ability to monitor the health of complex structures such as aeronautic or civil engineering structures in real time is becoming increasingly important. This process is referred to as structural health monitoring (SHM) ...
  • Damage type classification based on structures nonlinear dynamical signature 
    BAKIR, Myriam; REBILLAT, Marc; MECHBAL, Nazih (IFAC, 2015)
    Structural damages result in nonlinear dynamical signatures that significantly help for their monitoring. A damage type classification approach is proposed here that is based on a parallel Hammerstein models ...
  • A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves 
    FENDZI, Claude; REBILLAT, Marc; MECHBAL, Nazih; GUSKOV, Mikhail; COFFIGNAL, Gérard (SAGE Journals, 2016)
    This paper presents a temperature compensation method for Lamb wave structural health monitoring. The proposed approach considers a representation of the piezo-sensor signal through its Hilbert transform that allows one ...
  • Generation of controlled delaminations in composites using symmetrical laser shock configuration 
    GHRIB, Meriem; BERTHE, Laurent; MECHBAL, Nazih; REBILLAT, Marc; GUSKOV, Mikhail; ECAULT, Romain; BEDREDDINE, Nas (Elsevier, 2017)
    Structural Health Monitoring (SHM) is defined as the process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructures. SHM can be organized into five main steps: ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales