Orthogonal cutting mechanisms of CFRP/Ti6Al4V stacks
Article dans une revue avec comité de lecture
Date
2019Journal
International Journal of Advanced Manufacturing TechnologyRésumé
The enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the current knowledge of machining CFRP/Ti6Al4V stacks remains insufficient to guide their industrial applications. The main contribution of the present paper lies in the scientific understanding of the coupling effects and underlying mechanisms dominating the stack chip formation and cutting response transfer via the orthogonal cutting method. A particular focus was placed on the identification of the impact of different cutting sequence strategies (i.e., cutting from CFRP to Ti6Al4Vand from Ti6Al4V to CFRP) on the stack machinability. The orthogonal cutting tests were carefully performed on a shaper machine tool using the polycrystalline diamond (PCD)–tipped inserts. The present study covers a variety of aspects in the CFRP/Ti6Al4V machining including the chip removal process, cutting forces, chip features, bouncing-back phenomenon and machined surface quality. The results discussed in this work allow for a better cutting understanding of CFRP/Ti6Al4V stacks and could advance the state of knowledge of the subject area.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMachining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
-
Article dans une revue avec comité de lectureLI, Chao; XU, Jinyang; CHEN, Ming; AN, Qinglong; EL MANSORI, Mohamed; REN, Fei (Elsevier BV, 2019-04)Drilling CFRP/Ti6Al4V stacks in one-shot time becomes essential in the modern aerospace manufacturing sectors in order to guarantee the productivity due to the demands of riveting and fastening assembly. In the present ...
-
Article dans une revue avec comité de lectureThe present paper aims to utilize the orthogonal cutting method to offer an enhanced interpretation of the drilling process on CFRP/Ti6Al4V stacks. It contributes to relating the chip separation modes of the orthogonal ...
-
Article dans une revue avec comité de lectureHigh-strength carbon fiber reinforced polymer (CFRP) composites have become popular materials to be utilized in the aerospace and automotive industries, due to their unique and superior mechanical properties. An understanding ...
-
Article dans une revue avec comité de lectureIn hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The ...