A novel sparse reduced order formulation for modeling electromagnetic forces in electric motors
Type
Articles dans des revues avec comité de lectureDate
2021Journal
SN Applied SciencesAbstract
A novel model order reduction (MOR) technique is presented to achieve fast and real-time predictions as well as high-dimensional parametric solutions for the electromagnetic force which will help the design, analysis of performance and implementation of electric machines concerning industrial applications such as the noise, vibration, and harshness in electric motors. The approach allows to avoid the long-time simulations needed to analyze the electric machine at different operation points. In addition, it facilitates the computation and coupling of the motor model in other physical subsystems. Specifically, we propose a novel formulation of the sparse proper generalized decomposition procedure, combining it with a reduced basis approach, which is used to fit correctly the reduced order model with the numerical simulations as well as to obtain a further data compression. This technique can be applied to construct a regression model from high-dimensional data. These data can come, for example, from finite element simulations. As will be shown, an excellent agreement between the results of the proposed approach and the finite element method models are observed.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
AMMAR, Amine; GHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean‐Louis; CUETO, Elías; CHINESTA, Francisco (Wiley, 2020)Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
-
FRAHI, Tarek; CHINESTA, Francisco; FALCO, Antonio; BADIAS, Alberto; CUETO, Elias; CHOI, Hyung Yun; HAN, Manyong; DUVAL, Jean-Louis (MDPI AG, 2021-03-16)We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive ...
-
IBAÑEZ, Rubén; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; GONZALEZ, David; CUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; CHINESTA, Francisco (Hindawi Limited, 2018)Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
-
IBAÑEZ, R.; ABISSET-CHAVANNE, Emmanuelle; CUETO, Elías G.; AMMAR, Amine; DUVAL, Jean Louis; CHINESTA, Francisco (Springer, 2019)Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...
-
IBÁÑEZ PINILLO, Rubén; AMMAR, Amine; CUETO, Elías G.; HUERTA, Antonio; DUVAL, Jean Louis; CHINESTA, Francisco (Wiley, 2019)Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretization techniques are constraints to mesh up to the finest scale to predict accurately the response of the system. The ...