• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empowering Advanced Parametric Modes Clustering from Topological Data Analysis

Article dans une revue avec comité de lecture
Auteur
FRAHI, Tarek
FALCO, Antonio
307554 Universidad Cardenal Herrera-CEU [CEU-UCH]
MAU, Baptiste Vinh
564849 ESI Group [ESI Group]
DUVAL, Jean Louis
564849 ESI Group [ESI Group]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/20835
DOI
10.3390/app11146554
Date
2021
Journal
Applied Sciences

Résumé

Modal analysis is widely used for addressing NVH—Noise, Vibration, and Hardness—in automotive engineering. The so-called principal modes constitute an orthogonal basis, obtained from the eigenvectors related to the dynamical problem. When this basis is used for expressing the displacement field of a dynamical problem, the model equations become uncoupled. Moreover, a reduced basis can be defined according to the eigenvalues magnitude, leading to an uncoupled reduced model, especially appealing when solving large dynamical systems. However, engineering looks for optimal designs and therefore it focuses on parametric designs needing the efficient solution of parametric dynamical models. Solving parametrized eigenproblems remains a tricky issue, and, therefore, nonintrusive approaches are privileged. In that framework, a reduced basis consisting of the most significant eigenmodes is retained for each choice of the model parameters under consideration. Then, one is tempted to create a parametric reduced basis, by simply expressing the reduced basis parametrically by using an appropriate regression technique. However, an issue remains that limits the direct application of the just referred approach, the one related to the basis ordering. In order to order the modes before interpolating them, different techniques were proposed in the past, being the Modal Assurance Criterion—MAC—one of the most widely used. In the present paper, we proposed an alternative technique that, instead of operating at the eigenmodes level, classify the modes with respect to the deformed structure shapes that the eigenmodes induce, by invoking the so-called Topological Data Analysis—TDA—that ensures the invariance properties that topology ensure.

Fichier(s) constituant cette publication

Nom:
PIMM_AS_2021_FRAHI.pdf
Taille:
1.846Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Empowering Advanced Driver-Assistance Systems from Topological Data Analysis 
    Article dans une revue avec comité de lecture
    FRAHI, Tarek; ccCHINESTA SORIA, Francisco; FALCO, Antonio; BADIAS, Alberto; ccCUETO, Elias; CHOI, Hyung Yun; HAN, Manyong; DUVAL, Jean-Louis (MDPI, 2021)
    We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive ...
  • Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; FALCO, Antonio; DUVAL, Jean-Louis; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)
    Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when a parameter variation affects the physics of the problem considerably. In these situations, classical ...
  • A separated representation involving multiple time scales within the Proper Generalized Decomposition framework 
    Article dans une revue avec comité de lecture
    PASQUALE, Angelo; ccAMMAR, Amine; FALCÓ, Antonio; PEROTTO, Simona; ccCUETO, Elias; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2021-11-26)
    Solutions of partial differential equations can exhibit multiple time scales. Standard discretization techniques are constrained to capture the finest scale to accurately predict the response of the system. In this paper, ...
  • Tape surfaces characterization with persistence images 
    Article dans une revue avec comité de lecture
    FRAHI, Tarek; ARGERICH, Clara; YUN, Minyoung; FALCO, Antonio; BARASINSKI, Anais; ccCHINESTA SORIA, Francisco (AIMS Press, 2020)
    The aim of this paper is to leverage the main surface topological descriptors to classify tape surface profiles, through the modelling of the evolution of the degree of intimate contact along the consolidation of pre-impregnated ...
  • Structural health monitoring by combining machine learning and dimensionality reduction techniques 
    Article dans une revue avec comité de lecture
    QUARANTA, Giacomo; LOPEZ, Elena; DUVAL, Jean Louis; HUERTA, Antonio; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Universitat politecnica de Catalunya, 2019)
    Structural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales