• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation

Article dans une revue avec comité de lecture
Auteur
CHEN, Qiang
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ROBERT, Gilles
471759 Solvay Engineering Plastics
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/20955
DOI
10.1016/j.mechmat.2021.104081
Date
2021
Journal
Mechanics of Materials

Résumé

In this paper, an original probabilistic micromechanics damage framework involving multi-deformation mechanisms, based on the modified Mori-Tanaka and Transformation Field Analysis (MT-TFA) techniques, is developed to predict monotonic and oligocyclic stress-strain responses in short fiber-reinforced polyamide composites. The proposed model allows simulating actual injection-induced fiber arrangement, which is characterized by arbitrary fractions of randomly oriented fibers distributed in the laminate plane. Furthermore, the modified MT-TFA approach employs a phenomenological model consisting of four Kelvin-Voigt branches and a viscoplastic branch, formulated under the thermodynamics framework, to describe the rate-dependent viscoelastic-viscoplastic deformation and the ductile damage of the polymer matrix phase. In addition, the Weibull probabilistic density function is utilized to simulate initiation and coalescence of the void-type discrete damage in the vicinity of the fiber/matrix interphase, induced by the fiber/matrix debonding as observed experimentally. The parameters of the developed model are calibrated against the experimental response of glass/polyamide (PA66/GF35) composites via uniaxial loading/unloading tests, by taking into account the actual fiber orientation density function (ODF). The reliability and efficiency of the modified Mori-Tanaka and TFA scheme are assessed vis-à-vis the separate and hold-out experimental data subjected to uniaxial and oligocyclic loading at various loading rates. Progressive matrix and interphase damage are compared in support of the modified MT-TFA technique’s capabilities to capture the experimentally observed damage mechanisms. To accurately capture the experimental response, the progressive degradation of the load transfer between the fiber and matrix phases is introduced through a reduction of the active fiber length. The latter is introduced by considering the effect of the interphase void-damage content. The new mean-field formulation provides accurate predictions of the overall response under complex loading paths. It can be combined with other techniques in our future work, such as cycle-jump, towards simulating high-cycle fatigue damage in short-fiber composite structures.

Fichier(s) constituant cette publication

Nom:
LEM3_MOM_2021_MERAGHNI.pdf
Taille:
4.298Mo
Format:
PDF
Fin d'embargo:
2022-03-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Hybrid Hierarchical Homogenization Theory for Unidirectional CNTs-Coated Fuzzy Fiber Composites Undergoing Inelastic Deformations 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Elsevier BV, 2021)
    A new hybrid homogenization approach is proposed for simulating the homogenized and local response of unidirectional fuzzy fiber nanocomposites undergoing inelastic deformations. Fuzzy fiber composites are hier­archical ...
  • Extended Mean-Field Homogenization of Viscoelastic-Viscoplastic Polymer Composites Undergoing Hybrid Progressive Degradation Induced by Interface Debonding and Matrix Ductile Damage 
    Article dans une revue avec comité de lecture
    CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil (Elsevier, 2020)
    In this contribution, a probabilistic micromechanics damage framework is presented to predict the macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced thermoplastic polymer composites. ...
  • Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials 
    Article dans une revue avec comité de lecture
    CHATZIGEORGIOU, George; CHARALAMBAKIS, Nicolas; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2016)
    The current work deals with periodic thermomechanical composite media, in which the material constituents are considered to obey the generalized standard materials laws. The aim is to provide a proper homogenization framework ...
  • Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites 
    Article dans une revue avec comité de lecture
    ANAGNOSTOU, Dimitrios; CHATZIGEORGIOU, George; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2018)
    The aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: ...
  • Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures 
    Article dans une revue avec comité de lecture
    TIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2018)
    In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales