A calibration procedure for the assessment of work hardening Part II: Application to shot peened IN718 parts
Article dans une revue avec comité de lecture
Author
Abstract
The objective of this paper is to discuss the application of the calibration methodology exposed in the previous part to shot-peened Inconel 718 specimens. Shot peening is commonly used to increase the fatigue life of critical parts such as Inconel 718 turbine discs. This surface treatment induces residual stresses, work hardening and possibly, gradients of microstructures that, in turn, affect fatigue life. Work hardening is a quantity that represents a set of physical and mechanical phenomena related to the level of disorder reached in the microstructure of the material. Work hardening is seldom taken into account in fatigue life assessment mainly because it is not possible to characterize this quantity directly. We propose to use the calibration methodology (see part I of this paper [1]) on samples shot peened with several conditions. The three complementary experimental techniques (microhardness, XRD and EBSD) are then used to determine through correlation curves the work hardening gradients. The meth-odology for characterizing the work hardening within shot peened specimens is first presented. A dis-cussion of the applicability of the method in this context is then provided. The results obtained for the different characterization methods and microstructural effects are analyzed in two different sections. Finally, the influence of shot peening conditions on residual stresses and on work hardening is dis-cussed, showing the interest of the proposed procedure to obtain a real picture of the mechanical state after shot peening.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureGOULMY, Jean-Patrick; ROUHAUD, E.; KANOUTE, P.; TOUALBI, L.; KRUCH, S.; BOYER, V.; BADREDDINE, J.; RETRAINT, D. (Elsevier BV, 2021)This paper presents a methodology to define and quantify the level of work hardening locally in a material. The methodology is proposed after a thorough experimental study based on three complementary experimental techniques ...
-
Article dans une revue avec comité de lectureGOULMY, Jean-Patrick; BOYER, V.; RETRAINT, D.; KANOUTE, P.; TOUALBI, L.; ROUHAUD, E. (Elsevier BV, 2023-03)Shot peening of turbine disk engines is performed in the aerospace industry in order to enhance fatigue life. This surface enhancement method generates beneficial modifications like superficial compressive residual stresses ...
-
Article dans une revue avec comité de lectureGOULMY, Jean-Patrick; TOUALBI, L.; BOYER, V.; KANOUTE, P.; RETRAINT, D.; ROUHAUD, E. (Elsevier BV, 2024-09)This study proposes a model for the influence of work hardening and microstructure on the thermal relaxation of residual stresses. To construct such a model, an experimental campaign is first conducted on shot peened samples ...
-
Article dans une revue avec comité de lectureGOULMY, Jean-Patrick; DEPRIESTER, Dorian; GUITTONNEAU, F.; JÉGOU, Sébastien; BARRALLIER, Laurent (Elsevier BV, 2022-12)Understanding the mechanisms at the microstructure scale is of great importance for modeling the behavior of materials at different scales. To this end, digital image correlation (DIC) is an effective measurement method ...
-
Article dans une revue avec comité de lectureGOULMY, Jean-Patrick; GUITTONNEAU, Fabrice; JÉGOU, Sébastien; BARRALLIER, Laurent (Wiley, 2023-07-13)Performing in situ scanning electron microscope (SEM) tests is an interesting way to visualise strain heterogeneities under mechanical loading. An essential step before performing the tests is to define the acquisition ...