Linear and nonlinear optimal growth mechanisms for generating turbulent bands
Article dans une revue avec comité de lecture
Date
2022Journal
Journal of Fluid MechanicsRésumé
Recently, many authors have investigated the origin and growth of turbulent bands in shear flows, highlighting the role of streaks and their inflectional instability in the process of band generation and sustainment. Recalling that streaks are created by an optimal transient growth mechanism, and motivated by the observation of a strong increase of the disturbance kinetic energy corresponding to the creation of turbulent bands, we use linear and nonlinear energy optimisations in a tilted domain to unveil the main mechanisms allowing the creation of a turbulent band in a channel flow. Linear transient growth analysis shows an optimal growth for wavenumbers having an angle of approximately 35◦, close to the peak values of the premultiplied energy spectra of direct numerical simulations. This linear optimal perturbation generates oblique streaks, which, for a sufficiently large initial energy, induce turbulence in the whole domain, due to the lack of spatial localisation. However, spatially localised perturbations obtained by adding nonlinear effects to the optimisation or by artificially confining the linear optimal to a localised region in the transverse direction are characterised by a large-scale flow and lead to the generation of a localised turbulent band. These results suggest that two main elements are needed for inducing turbulent bands in a tilted domain: (i) a linear energy growth mechanism, such as the lift-up, for generating large-amplitude flow structures, which produce inflection points; (ii) spatial localisation, linked to the presence or generation of large-scale vortices. We show that these elements alone generate isolated turbulent bands also in large non-tilted domains.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lecturePARENTE, Enza; DE PALMA, Pietro; CHERUBINI, Stefania; ROBINET, Jean-Christophe (American Physical Society, 2020)The modal and nonmodal linear stability of a stably stratified Blasius boundary layer flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal and spatial linear stability of such flow is ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; FARANO, Mirko; DE PALMA, Pietro; CHERUBINI, Stefania; ROBINET, Jean-Christophe (The Royal Society Publishing, 2022-05)A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged ...
-
Article dans une revue avec comité de lecturePARENTE, Enza; ROBINET, Jean-Christophe; DE PALMA, Paul; CHERUBINI, Stefania (Cambridge University Press (CUP), 2022-05)In this work, nonlinear variational optimization is used for obtaining minimal seeds for the formation of turbulent bands in channel flow. Using nonlinear optimization together with energy bisection, we have found that the ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2013)The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A ...
-
Article dans une revue avec comité de lectureWe use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, T u, and integral length scale, L, in order to determine which kind of structures are involved in the path ...